OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 5 — Mar. 1, 2006
  • pp: 619–621

Self-interaction and mutual interaction of complex-argument Laguerre–Gauss beams

S. R. Seshadri  »View Author Affiliations


Optics Letters, Vol. 31, Issue 5, pp. 619-621 (2006)
http://dx.doi.org/10.1364/OL.31.000619


View Full Text Article

Enhanced HTML    Acrobat PDF (67 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A general method is presented for the determination of the time-averaged power associated with the self-interaction and the mutual interaction of cylindrically symmetric complex-argument Laguerre–Gauss beams. The method is also applied for the determination of two useful moments of the time-averaged Poynting vector.

© 2006 Optical Society of America

OCIS Codes
(010.3310) Atmospheric and oceanic optics : Laser beam transmission
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation
(350.7420) Other areas of optics : Waves

ToC Category:
Physical Optics

History
Original Manuscript: September 2, 2005
Revised Manuscript: October 7, 2005
Manuscript Accepted: October 31, 2005

Citation
S. R. Seshadri, "Self-interaction and mutual interaction of complex-argument Laguerre-Gauss beams," Opt. Lett. 31, 619-621 (2006)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-5-619


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Kogelnik and T. Li, Appl. Opt. 5, 1550 (1966). [CrossRef] [PubMed]
  2. A. E. Siegman, J. Opt. Soc. Am. 63, 1093 (1973). [CrossRef]
  3. T. Takenaka, M. Yokota, and O. Fukumitsu, J. Opt. Soc. Am. A 2, 826 (1985). [CrossRef]
  4. S. R. Seshadri, Opt. Lett. 27, 1872 (2002). [CrossRef]
  5. S. Saghafi and C. J. R. Sheppard, Opt. Commun. 153, 207 (1998). [CrossRef]
  6. S. Saghafi, C. J. R. Sheppard, and J. A. Piper, Opt. Commun. 191, 173 (2001). [CrossRef]
  7. M. Abramowitz and I. A. Stegun, eds. Handbook of Mathematical Functions (U.S. Government Printing Office, 1965), p. 784, formula (22.9.15).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited