OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 6 — Mar. 15, 2006
  • pp: 682–684

Multistage two-dimensional magneto-optical trap as a compact cold atom beam source

Jaime Ramirez-Serrano, Nan Yu, James M. Kohel, James R. Kellogg, and Lute Maleki  »View Author Affiliations

Optics Letters, Vol. 31, Issue 6, pp. 682-684 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (120 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A compact cold atom beam source based on a multistage two-dimensional magneto-optical trap (MOT) has been demonstrated and characterized. The multiple-stage design greatly reduces the overall size of the source apparatus while providing a high flux of atoms. The cold atom beam was used to load a separate MOT in ultrahigh vacuum, and we obtained an actual trap loading rate of 1.5 × 10 9   atoms s while using only 20 mW of total laser power for the source. The entire source apparatus, including optics, can fit into a 4 cm × 4 cm × 13 cm volume.

© 2006 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.2070) Atomic and molecular physics : Effects of collisions
(020.7010) Atomic and molecular physics : Laser trapping
(140.3320) Lasers and laser optics : Laser cooling
(140.7010) Lasers and laser optics : Laser trapping

ToC Category:
Atomic and Molecular Physics

Original Manuscript: September 9, 2005
Revised Manuscript: November 30, 2005
Manuscript Accepted: December 4, 2005

Jaime Ramirez-Serrano, Nan Yu, James M. Kohel, James R. Kellogg, and Lute Maleki, "Multistage two-dimensional magneto-optical trap as a compact cold atom beam source," Opt. Lett. 31, 682-684 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Raab, M. Prentiss, A. Cable, S. Chu, and D. Pritchard, Phys. Rev. Lett. 59, 2631 (1987). [CrossRef] [PubMed]
  2. W. D. Phillips and H. Metcalf, Phys. Rev. Lett. 48, 596 (1982). [CrossRef]
  3. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996). [CrossRef] [PubMed]
  4. S. Weyers, E. Aucouturier, C. Valentin, and N. Dimarcq, Opt. Commun. 143, 30 (1997). [CrossRef]
  5. K. Dieckmann, R. J. C. Spreeuw, M. Weidemüller, and J. T. M. Walraven, Phys. Rev. A 58, 3891 (1998). [CrossRef]
  6. P. Berthoud, A. Joyet, G. Dudle, N. Sagna, and P. Thomann, Europhys. Lett. 41, 141 (1998). [CrossRef]
  7. B. Ghaffari, J. M. Gerton, W. I. McAlexander, K. E. Strecker, D. M. Homan, and R. G. Hulet, Phys. Rev. A 60, 3878 (1999). [CrossRef]
  8. J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Yu. B. Ovchinnikov, and T. Pfau, Phys. Rev. A 66, 023410 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited