OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 6 — Mar. 15, 2006
  • pp: 820–822

Focusing property of a double-ring-shaped radially polarized beam

Yuichi Kozawa and Shunichi Sato  »View Author Affiliations

Optics Letters, Vol. 31, Issue 6, pp. 820-822 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The intensity distributions of a tightly focused radially polarized beam that has a double-ring-shaped transverse mode pattern were calculated based on vector diffraction theory. The distribution of the longitudinal component near the focus varied drastically with the degree of truncation of the incident beam by a pupil. When the ratio of the pupil radius to the beam radius was 1.3 , the longitudinal component disappeared at the focal point, owing to destructive interference. This dark area surrounded by an intense light field was of the order of the wavelength, with excellent intensity symmetry.

© 2006 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(140.3300) Lasers and laser optics : Laser beam shaping
(260.3160) Physical optics : Interference
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: November 21, 2005
Revised Manuscript: December 7, 2005
Manuscript Accepted: December 12, 2005

Yuichi Kozawa and Shunichi Sato, "Focusing property of a double-ring-shaped radially polarized beam," Opt. Lett. 31, 820-822 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000). [CrossRef] [PubMed]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Opt. Commun. 179, 1 (2000). [CrossRef]
  3. Q. Zhan, Opt. Express 12, 3377 (2004). [CrossRef] [PubMed]
  4. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999). [CrossRef]
  5. S. C. Tidwell, G. H. Kim, and W. D. Kimura, Appl. Opt. 32, 5222 (1993). [CrossRef] [PubMed]
  6. G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, and K. Ohbayashi, Appl. Phys. Lett. 84, 3855 (2004). [CrossRef]
  7. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, Phys. Rev. Lett. 86, 5251 (2001). [CrossRef] [PubMed]
  8. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990). [CrossRef] [PubMed]
  9. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000). [CrossRef]
  10. D. Pohl, Appl. Phys. Lett. 20, 266 (1972). [CrossRef]
  11. Y. Mushiake, K. Matsumura, and N. Nakajima, Proc. IEEE 60, 1107 (1972). [CrossRef]
  12. T. Moser, H. Glur, V. Romano, F. Pigeon, O. Parriaux, M. A. Ahmed, and T. Graf, Appl. Phys. B 80, 707 (2005). [CrossRef]
  13. Y. Kozawa and S. Sato, Opt. Lett. 30, 3063 (2005). [CrossRef] [PubMed]
  14. A. V. Nesterov and V. G. Niziev, Appl. Phys. B 33, 1817 (1999).
  15. B. Richards and E. Wolf, Proc. R. Soc. London Ser. A 253, 358 (1959). [CrossRef]
  16. A. A. Tovar and G. H. Clark, J. Opt. Soc. Am. A 14, 3333 (1997). [CrossRef]
  17. A. A. Tovar, J. Opt. Soc. Am. A 15, 2705 (1998). [CrossRef]
  18. A. Boivin and E. Wolf, Phys. Rev. 138, 1561 (1965). [CrossRef]
  19. J. Arlt and M. J. Padgett, Opt. Lett. 25, 191 (2000). [CrossRef]
  20. T. Freegarde and K. Dholakia, Phys. Rev. A 66, 013413 (2002). [CrossRef]
  21. Y. Zhao, Q. Zhan, Y. Zhang, and Y. Li, Opt. Lett. 30, 848 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited