OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 7 — Apr. 1, 2006
  • pp: 945–947

Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy

Euiheon Chung, Daekeun Kim, and Peter T.C. So  »View Author Affiliations

Optics Letters, Vol. 31, Issue 7, pp. 945-947 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Standing-wave total-internal-reflection fluorescence (SW-TIRF) microscopy uses a super-diffraction-limited standing evanescent wave to extract the high-spatial-frequency content of an object through a diffraction-limited optical imaging system. The effective point-spread function is better than a quarter of the emission wavelength. With a 1.45 numerical aperture objective and 532 nm excitation wavelength, a Rayleigh resolution of approximately 100 nm can be achieved, which is better than twice the resolution of conventional TIRF microscopy. This first experimental realization of SW-TIRF in an objective-launched geometry demonstrates the potential for extended resolution imaging at high speed by using wide-field microscopy.

© 2006 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(180.0180) Microscopy : Microscopy
(180.2520) Microscopy : Fluorescence microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: November 4, 2005
Revised Manuscript: December 17, 2005
Manuscript Accepted: December 19, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Euiheon Chung, Daekeun Kim, and Peter T. So, "Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy," Opt. Lett. 31, 945-947 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005). [CrossRef] [PubMed]
  2. S. Hell and J. WichmannOpt. Lett. 19, 780 (1994). [CrossRef] [PubMed]
  3. M. Dyba and S. Hell, Phys. Rev. Lett. 88, 163901 (2002). [CrossRef] [PubMed]
  4. M. G. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005) [CrossRef] [PubMed]
  5. M. G. Gustafsson, J. Microsc. (Oxford) 198 (Pt. 2), 82 (2000). [CrossRef]
  6. J. T. Frohn, H. F. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. U.S.A. 97, 7232 (2000). [CrossRef] [PubMed]
  7. R. Fedosseev, Y. Belyaev, J. Frohn, and A. Stemmer, Opt. Lasers Eng. 43, 403 (2005). [CrossRef]
  8. G. Cragg and P. T. So, Opt. Lett. 25, 46 (2000). [CrossRef]
  9. P. T. So, H. S. Kwon, and C. Y. Dong, J. Opt. Soc. Am. A 18, 2833 (2001). [CrossRef]
  10. D. Axelrod, Traffic 2, 764 (2001). [CrossRef] [PubMed]
  11. H. Schneckenburger, Curr. Opin. Biotechnol. 16, 13 (2005). [CrossRef] [PubMed]
  12. P. E. Hanninen, S. W. Hell, J. Salo, and E. Soini, Appl. Phys. Lett. 66, 1698 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited