OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 7 — Apr. 1, 2006
  • pp: 990–992

Space-domain lock-in amplifier based on a liquid-crystal spatial light modulator

Gregory P. Lousberg, Lars D.A. Lundeberg, Dmitri L. Boiko, and Eli Kapon  »View Author Affiliations

Optics Letters, Vol. 31, Issue 7, pp. 990-992 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a two-dimensional (2D) spatial lock-in amplifier that provides a contrast ratio of more than 10,000:1 for transmitted and blocked intensity patterns using a conventional liquid-crystal spatial light modulator. The device is based on spatial-domain modulation–demodulation of intensity patterns under coherent imaging conditions. The operation of the 2D lock-in amplifier is illustrated by implementing Young’s double-slit arrangement for measurements of the mutual coherence between individual emitters of a 2D phase-coupled array of vertical cavity surface emitting lasers.

© 2006 Optical Society of America

OCIS Codes
(050.1380) Diffraction and gratings : Binary optics
(070.6110) Fourier optics and signal processing : Spatial filtering
(110.1220) Imaging systems : Apertures
(230.3720) Optical devices : Liquid-crystal devices
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Optical Devices

Original Manuscript: August 4, 2005
Revised Manuscript: December 15, 2005
Manuscript Accepted: December 18, 2005

Gregory P. Lousberg, Lars D. Lundeberg, Dmitri L. Boiko, and Eli Kapon, "Space-domain lock-in amplifier based on a liquid-crystal spatial light modulator," Opt. Lett. 31, 990-992 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Q. Mu, Opt. Express 12, 6403 (2004). [CrossRef] [PubMed]
  2. V. Bagnoud and J. D. Zuegel, Opt. Lett. 29, 295 (2004). [CrossRef] [PubMed]
  3. R. L. Eriksen, V. R. Daria, and J. Glückstad, Opt. Express 10, 597 (2002). [PubMed]
  4. V. R. Daria, P. J. Rodrigo, and J. Glückstad, Opt. Commun. 232, 229 (2004). [CrossRef]
  5. Y. Bitou, Opt. Lett. 28, 1576 (2003). [CrossRef] [PubMed]
  6. P. J. Smith, C. M. Taylor, A. J. Shaw, and E. M. McCabe, Appl. Opt. 39, 2664 (2000). [CrossRef]
  7. M. Killinger, J. L. de Bougrenet de la Tocnaye, P. Cambon, R. C. Chittick, and W. A. Crossland, Appl. Opt. 31, 3930 (1992). [CrossRef] [PubMed]
  8. X. Xun and R. Cohn, Appl. Opt. 43, 6400 (2004). [CrossRef] [PubMed]
  9. S. Shen and A. M. Weiner, IEEE Photon. Technol. Lett. 11, 566 (1999). [CrossRef]
  10. M. Orenstein, E. Kapon, J. P. Harbison, L. T. Florez, and N. G. Stoffel, Appl. Phys. Lett. 60, 1535 (1992). [CrossRef]
  11. L. D. Landau and E. M. Lifshits, Electrodynamics of Continuous Media (Nauka, 1992), §94.
  12. E. Hällstig, T. Martin, L. Sjöqvist, and M. Lindgren, J. Opt. Soc. Am. A 22, 177 (2005). [CrossRef]
  13. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, Appl. Opt. 38, 5004 (1999). [CrossRef]
  14. G. C. Dente, K. A. Wilson, T. C. Salvi, and D. Depatie, Appl. Phys. Lett. 51, 9 (1987). [CrossRef]
  15. N. W. Carlson, V. J. Masin, M. Lurie, B. Goldstein, and G. A. Evans, Appl. Phys. Lett. 51, 643 (1987). [CrossRef]
  16. Z. He, N. Mukohzaka, and K. Hotate, IEEE Photon. Technol. Lett. 9, 514 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited