OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 8 — Apr. 15, 2006
  • pp: 1073–1075

Mode-coupling analysis of three-dimensional microdisk resonators by the finite-difference time-domain technique

Xian-Shu Luo, Yong-Zhen Huang, and Qin Chen  »View Author Affiliations

Optics Letters, Vol. 31, Issue 8, pp. 1073-1075 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (232 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quality factor enhancement due to mode coupling is observed in a three-dimensional microdisk resonator. The microdisk, which is vertically sandwiched between air and a substrate, with a radius of 1 μ m , a thickness of 0.2 μ m , and a refractive index of 3.4, is considered in a finite-difference time-domain (FDTD) numerical simulation. The mode quality factor of the fundamental mode HE 71 decreases with an increase of the refractive index of the substrate, n sub , from 2.0 to 3.17. However, the mode quality factor of the first-order mode HE 72 reaches a peak value at n sub = 2.7 because of the mode coupling between the fundamental and the first-order modes. The variation of mode field distributions due to the mode coupling is also observed. This mechanism may be used to realize high-quality-factor modes in microdisks with high-refractive-index substrates.

© 2006 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(200.0200) Optics in computing : Optics in computing
(260.6970) Physical optics : Total internal reflection

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 11, 2005
Revised Manuscript: January 8, 2006
Manuscript Accepted: January 16, 2006

Xian-Shu Luo, Yong-Zhen Huang, and Qin Chen, "Mode-coupling analysis of three-dimensional microdisk resonators by the finite-difference time-domain technique," Opt. Lett. 31, 1073-1075 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992). [CrossRef]
  2. M. K. Chin, D. Y. Chu, and S.-T. Ho, J. Appl. Phys. 75, 3302 (1994). [CrossRef]
  3. N. C. Frateschi and A. F. J. Levi, J. Appl. Phys. 80, 644 (1996). [CrossRef]
  4. B.-J. Li and P.-L. Liu, IEEE J. Quantum Electron. 32, 1583 (1996). [CrossRef]
  5. R. P. Wang and M.-M. Dumitreschu, IEEE J. Quantum Electron. 34, 1933 (1998). [CrossRef]
  6. W. H. Guo, W. J. Li, and Y. Z. Huang, IEEE Microw. Wirel. Compon. Lett. 11, 223 (2001). [CrossRef]
  7. H. A. Huas and W. P. Huang, Proc. IEEE 79, 1505 (1991). [CrossRef]
  8. Q. Chen, Y.-Z. Huang, W.-H. Guo, and L.-J. Yu, IEEE J. Quantum Electron. 41, 997 (2005). [CrossRef]
  9. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990). [CrossRef] [PubMed]
  10. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992). [CrossRef] [PubMed]
  11. J. Y. Duboz, J. Phys. I 7, 1693 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited