OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 8 — Apr. 15, 2006
  • pp: 1109–1111

Tunable superprism and polarization splitting in a liquid crystal infiltrated two-dimensional photonic crystal made of silicon oxynitride

G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu  »View Author Affiliations

Optics Letters, Vol. 31, Issue 8, pp. 1109-1111 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (67 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Tunable superprism and polarization splitting effects, based on liquid-crystal infiltrated two-dimensional photonic crystal with SiON as a background material, are demonstrated. Owing to the strong birefringence of the liquid crystal, the dispersion curves of the two polarizations are distinctly different, resulting in large splitting between the two polarizations. Extremely large splitting, as large as 80 ° , can be obtained. Moreover, the splitting can be tuned to a substantial degree when the optic axis of the liquid crystal is reoriented. Fully controllable, incident-angle-dependent and wavelength-dependent superprism effects are also demonstrated. This large swing in the refraction can be completely switched off by reorientation of the optic axis of the liquid crystal, thus to resemble bulk media refraction.

© 2006 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.5480) Optical devices : Prisms

ToC Category:
Optical Devices

Original Manuscript: October 18, 2005
Revised Manuscript: December 14, 2005
Manuscript Accepted: December 26, 2005

G. Alagappan, X. W. Sun, P. Shum, and M. B. Yu, "Tunable superprism and polarization splitting in a liquid crystal infiltrated two-dimensional photonic crystal made of silicon oxynitride," Opt. Lett. 31, 1109-1111 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Joannopoulus, R. D. Meade, and J. N. Winn, Photonic Crystals Modelling the Flow of Light (Princeton U. Press, 1995), pp. 94-100 and 126.
  2. M. Lonar, D. Nedeljkovi, T. Doll, J. Vukovi, A. Scherer, and T. P. Pearsall, Appl. Phys. Lett. 77, 1937 (2000). [CrossRef]
  3. S. Enoch, G. Tayeb, and B. Gralak, IEEE Trans. Antennas Propag. 51, 2659 (2003). [CrossRef]
  4. M. Notomi, Phys. Rev. B 62, 10696 (2000). [CrossRef]
  5. H. Takeda and K. Yoshino, J. Appl. Phys. 92, 5658 (2004). [CrossRef]
  6. G. Mertens, T. Röder, H. Matthias, H. Marsmann, H. R. Kitzerow, S. L. Schweizer, C. Jamois, R. B. Wehrspohn, and M. Neubert, Appl. Phys. Lett. 83, 3036 (2003). [CrossRef]
  7. S. W. Leonard, J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gosele, and V. Lehmann, Phys. Rev. B 61, R2389 (2000). [CrossRef]
  8. Y. Shimoda, M. Ozaki, and K. Yoshino, Appl. Phys. Lett. 79, 3627 (2003). [CrossRef]
  9. C.-Y. Liu and L.-W. Chen, Phys. Rev. B 72, 045133 (2005). [CrossRef]
  10. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, Phys. Rev. Lett. 86, 4052 (2001). [CrossRef] [PubMed]
  11. S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, Jpn. J. Appl. Phys. Part 1 43, 7634 (2004). [CrossRef]
  12. C. Sekine, M. Ishitobi, K. Iwakura, M. Minai, and K. Fujisawa, Liq. Cryst. 29, 355 (2002). [CrossRef]
  13. K.-M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990). [CrossRef] [PubMed]
  14. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (Springer, l995), pp. 60-63.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited