OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 31, Iss. 9 — May. 1, 2006
  • pp: 1325–1327

Rows of optical vortices from elliptically perturbing a high-order beam

Mark R. Dennis  »View Author Affiliations

Optics Letters, Vol. 31, Issue 9, pp. 1325-1327 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (155 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical vortex (phase singularity) with a high topological strength resides on the axis of a high-order light beam. The breakup of this vortex under elliptic perturbation into a straight row of unit-strength vortices is described. This behavior is studied in helical Ince–Gauss beams and astigmatic, generalized Hermite–Laguerre–Gauss beams, which are perturbations of Laguerre–Gauss beams. Approximations of these beams are derived for small perturbations, in which a neighborhood of the axis can be approximated by a polynomial in the complex plane: a Chebyshev polynomial for Ince–Gauss beams, and a Hermite polynomial for astigmatic beams.

© 2006 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: January 18, 2006
Manuscript Accepted: January 28, 2006

Mark R. Dennis, "Rows of optical vortices from elliptically perturbing a high-order beam," Opt. Lett. 31, 1325-1327 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L.Allen, S.M.Barnett, and M.J.Padgett, eds., Optical Angular Momentum (Institute of Physics Publishing, 2003). [CrossRef]
  2. L. Allen, M. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, Phys. Rev. A 45, 8185 (1992). [CrossRef] [PubMed]
  3. D. McGloin and K. Dholakia, Contemp. Phys. 46, 15 (2005). [CrossRef]
  4. J. F. Nye, Natural Focusing and Fine Structure of Light (Institute of Physics Publishing, 1999).
  5. M. A. Bandres and J. C. Gutiérrez-Vega, J. Opt. Soc. Am. A 21, 873 (2004). [CrossRef]
  6. J. B. Bently, J. A. Davis, M. A. Bandres, and J. C. Gutiérrez-Vega, Opt. Lett. 31, 649 (2006). [CrossRef]
  7. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 25, 1493 (2000). [CrossRef]
  8. E. G. Abramochkin and V. G. Volostnikov, J. Opt. A, Pure Appl. Opt. 6, S157 (2004). [CrossRef]
  9. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, Opt. Commun. 241, 237 (2004). [CrossRef]
  10. F. S. Roux, Opt. Commun. 223, 31 (2003). [CrossRef]
  11. M. V. Berry and M. R. Dennis, J. Opt. A, Pure Appl. Opt. 6, S178 (2004). [CrossRef]
  12. A. O'Neil and J. Courtial, Opt. Commun. 181, 35 (2000). [CrossRef]
  13. M.Abramowitz and I.Stegun, eds., Handbook of Mathematical Functions (Dover, 1965), Chap. 22.
  14. I. Freund and N. Shvartsman, Phys. Rev. A 50, 5164 (1994). [CrossRef] [PubMed]
  15. I. Freund, Phys. Rev. E 52, 2348 (1995). [CrossRef]
  16. J. F. Nye, J. V. Hajnal, and J. H. Hannay, Proc. R. Soc. London Ser. A 417, 7 (1988). [CrossRef]
  17. F. M. Arscott, Periodic Differential Equations (Pergamon, 1964), pp. 451-456.
  18. C. P. Boyer, E. G. Kalnins, and W. Miller, Jr., J. Math. Phys. 16, 512 (1975). [CrossRef]
  19. R. Courant and D. Hilbert, Methods of Mathematical Physics (Interscience, 1953), Vol. 1.
  20. Y. Y. Schechner and J. Shamir, J. Opt. Soc. Am. A 13, 967 (1996). [CrossRef]
  21. M. R. Dennis, ''Topological singularities in wave fields,'' Ph.D. dissertation (Bristol University, 2001), Chap. 2.
  22. S. Danakas and P. K. Aravind, Phys. Rev. A 45, 1973 (1992). [CrossRef] [PubMed]
  23. V. Bargmann, Rev. Mod. Phys. 34, 829 (1962). [CrossRef]
  24. J. J. Sakurai, Modern Quantum Mechanics, revised ed. (Addison-Wesley, 1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited