OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 10 — May. 15, 2007
  • pp: 1232–1234

Denoising in digital speckle pattern interferometry using wave atoms

Alejandro Federico and Guillermo H. Kaufmann  »View Author Affiliations


Optics Letters, Vol. 32, Issue 10, pp. 1232-1234 (2007)
http://dx.doi.org/10.1364/OL.32.001232


View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

© 2007 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.2650) Image processing : Fringe analysis
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(120.6160) Instrumentation, measurement, and metrology : Speckle interferometry

ToC Category:
Image Processing

History
Original Manuscript: November 22, 2006
Revised Manuscript: February 2, 2007
Manuscript Accepted: February 15, 2007
Published: April 17, 2007

Citation
Alejandro Federico and Guillermo H. Kaufmann, "Denoising in digital speckle pattern interferometry using wave atoms," Opt. Lett. 32, 1232-1234 (2007)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-10-1232


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. K. Mohan and P. K. Rastogi, Opt. Lasers Eng. 40, 439 (2003). [CrossRef]
  2. L. Watkins, S. Tan, and T. Barnes, Opt. Lett. 24, 905 (1999). [CrossRef]
  3. C. A. Sciammarella and T. Kim, Opt. Eng. 42, 3182 (2003). [CrossRef]
  4. A. Federico and G. H. Kaufmann, Appl. Opt. 45, 1909 (2006). [CrossRef] [PubMed]
  5. A. Federico and G. H. Kaufmann, Opt. Eng. 41, 3209 (2002). [CrossRef]
  6. A. Federico and G. H. Kaufmann, Appl. Opt. 42, 7066 (2003). [CrossRef] [PubMed]
  7. A. Federico and G. H. Kaufmann, Appl. Opt. 44, 2728 (2005). [CrossRef] [PubMed]
  8. A. Federico and G. H. Kaufmann, Opt. Eng. 40, 2598 (2001). [CrossRef]
  9. E. J. Candès and D. L. Donoho, Commun. Pure Appl. Math. 57, 219 (2004). [CrossRef]
  10. L. Demanet, "Curvelets, wave atoms, and wave equations," Ph.D. Thesis, Caltech (2006), http://math.stanford.edu/~laurent/papers/ThesisDemanet.pdf.
  11. http://math.stanford.edu/~laurent/html/software.html.
  12. A. C. Bovik, Handbook of Image and Video Processing (Academic, 2005).
  13. http://www.curvelet.org/software.html.
  14. G. H. Kaufmann, Opt. Eng. 42, 2010 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited