OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 11 — Jun. 1, 2007
  • pp: 1423–1425

Resonant terahertz generation from InN thin films

Xiaodong Mu, Yujie J. Ding, Kejia Wang, Debdeep Jena, and Yuliya B. Zotova  »View Author Affiliations

Optics Letters, Vol. 32, Issue 11, pp. 1423-1425 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Highly efficient conversion from ultrafast optical pulses to their terahertz (THz) counterparts has been achieved with InN thin films. An average THz output power as high as 0.931 μ W has been obtained for an average pump power of 1 W , corresponding to a normalized conversion efficiency of 190 % mm 2 . Based on our measured dependences of the THz output power on pump polarization, incident angle, pump power, and InN film thickness, resonance-enhanced optical rectification is one of the most plausible mechanisms for the THz generation in the InN films.

© 2007 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Original Manuscript: January 19, 2007
Revised Manuscript: February 8, 2007
Manuscript Accepted: March 4, 2007
Published: April 30, 2007

Xiaodong Mu, Yujie J. Ding, Kejia Wang, Debdeep Jena, and Yuliya B. Zotova, "Resonant terahertz generation from InN thin films," Opt. Lett. 32, 1423-1425 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. L. Dakovski, B. Kubera, and J. Shan, J. Opt. Soc. Am. B 22, 1667 (2005). [CrossRef]
  2. H. Liu, J. Xu, T. Yuan, and X.-C. Zhang, Phys. Rev. B 73, 155330 (2006). [CrossRef]
  3. R. Ascázubi, I. Wilke, K. Denniston, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 84, 4810 (2004). [CrossRef]
  4. G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, C. S. Gallinat, G. Koblmüller, and J. S. Speck, Appl. Phys. Lett. 89, 141115 (2006). [CrossRef]
  5. K. A. Wang, Y. Cao, J. Simon, J. Zhang, A. Mintairov, J. Merz, D. Hall, T. Kosel, and D. Jena, Appl. Phys. Lett. 89, 162110 (2006). [CrossRef]
  6. P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, Appl. Phys. Lett. 72, 2069 (1998). [CrossRef]
  7. V. Y. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, and J. Graul, Phys. Status Solidi B 229, R1 (2002). [CrossRef]
  8. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys. 74, 4457 (2003). [CrossRef]
  9. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  10. B. F. Levine, Phys. Rev. 7, 2600 (1973). [CrossRef]
  11. F. N. H. Robinson, Phys. Lett. A 26, 435 (1968). [CrossRef]
  12. X.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. 56, 1011 (1990). [CrossRef]
  13. A. Zubrilov, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur, eds. (Wiley, 2001), pp. 49-66.
  14. Y. J. Ding, IEEE J. Sel. Top. Quantum Electron. 10, 1171 (2004). [CrossRef]
  15. V. I. Gavrilenko and R. Q. Wu, Phys. Rev. B 61, 2632 (2000). [CrossRef]
  16. X.-C. Zhang, Y. Jin, K. Yang, and L. J. Schowalter, Phys. Rev. Lett. 69, 2303 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited