OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 11 — Jun. 1, 2007
  • pp: 1501–1503

Realization of receptive fields with excitatory and inhibitory responses on equilibrium-state luminescence of electron trapping material

Ramin Pashaie and Nabil H. Farhat  »View Author Affiliations

Optics Letters, Vol. 32, Issue 11, pp. 1501-1503 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (399 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Our theoretical modelings and experimental observations illustrate that the equilibrium-state luminescence of electron-trapping materials (ETMs) can be controlled to produce either excitatory or inhibitory responses to the same optical stimulus. Because of this property, ETMs have a unique potential in optical realization of neurobiologically based parallel computations. As a classic example, we have controlled the equilibrium-state luminescence of a thin film of this stimulable storage phosphor to make it behave similarly to the receptive fields of sensory neurons in the mammalian visual system, which are responsible for early visual processing.

© 2007 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(200.4560) Optics in computing : Optical data processing
(200.4700) Optics in computing : Optical neural systems

ToC Category:
Optical Computing

Original Manuscript: January 17, 2007
Revised Manuscript: March 8, 2007
Manuscript Accepted: March 20, 2007
Published: May 7, 2007

Virtual Issues
Vol. 2, Iss. 7 Virtual Journal for Biomedical Optics

Ramin Pashaie and Nabil H. Farhat, "Realization of receptive fields with excitatory and inhibitory responses on equilibrium-state luminescence of electron trapping material," Opt. Lett. 32, 1501-1503 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh, Computational Maps in the Visual Cortex (Springer, 2005).
  2. M. F. Bear, B. W. Connors, and M. A. Paradiso, Neuroscience Exploring the Brain (Lippincott, 2001).
  3. R. W. Rodieck and J. Stone, J. Neurophysiol. 28, 833 (1965).
  4. C. A. Mead and M. A. Mahowald, Neural Networks 1, 91 (1988). [CrossRef]
  5. D. Armitage and J. I. Thackara, Appl. Opt. 28, 219 (1989). [CrossRef] [PubMed]
  6. H. Takei, A. Lewis, Z. Chen, and L. Nebenzahl, Appl. Opt. 30, 500 (1991). [CrossRef] [PubMed]
  7. V. Gruev and R. Etienne-Commings, IEEE Trans. Circuits Syst., II: Analog Digital Signal Process. 49, 233 (2002). [CrossRef]
  8. S. Jutamulia, G. M. Storti, J. Lindmayer, and W. Seiderman, Appl. Opt. 30, 2879 (1991). [CrossRef] [PubMed]
  9. S. Jutamuli, G. Stori, J. Lindmayer, and W. Seiderman, Appl. Opt. 32, 743 (1993). [CrossRef]
  10. Z. Wen, A. Baek, and N. Farhat, Opt. Lett. 20, 614 (1995). [CrossRef] [PubMed]
  11. Z. Wen and N. Farhat, Appl. Opt. 34, 5188 (1995). [CrossRef] [PubMed]
  12. R. Pashaie and N. Farhat, "Dynamics of electron-trapping materials under blue light and near-infrared exposure: a new model," submitted to JOSA B.
  13. The ETM sample for this research was furnished by Quantex Inc., Rockville, Maryland.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited