OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 11 — Jun. 1, 2007
  • pp: 1539–1541

Toward an understanding of white-light generation in cubic media—polarization properties across the entire spectral range

Ivan Buchvarov, Anton Trifonov, and Torsten Fiebig  »View Author Affiliations


Optics Letters, Vol. 32, Issue 11, pp. 1539-1541 (2007)
http://dx.doi.org/10.1364/OL.32.001539


View Full Text Article

Enhanced HTML    Acrobat PDF (74 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an extensive investigation of the polarization properties of a femtosecond-laser-induced white-light (WL) continuum generated in a cubic crystal ( CaF 2 ) . The WL spectrum and threshold energies have been examined for input polarizations with various degrees of ellipticity. For linear input polarization, the WL spectrum shows strong depolarization around the input wavelength, while the preservation of the input polarization is pronounced toward the blue spectral region. The observed depolarization effect has been elucidated in the framework of current models for WL generation.

© 2007 Optical Society of America

OCIS Codes
(190.5940) Nonlinear optics : Self-action effects
(260.5430) Physical optics : Polarization
(300.6530) Spectroscopy : Spectroscopy, ultrafast
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

History
Original Manuscript: October 20, 2006
Revised Manuscript: February 28, 2007
Manuscript Accepted: April 2, 2007
Published: May 15, 2007

Citation
Ivan Buchvarov, Anton Trifonov, and Torsten Fiebig, "Toward an understanding of white-light generation in cubic media—polarization properties across the entire spectral range," Opt. Lett. 32, 1539-1541 (2007)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-11-1539


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. R. Alfano, ed., The Supercontinuum Laser Source (Springer, 1989).
  2. A. Brodeur and S. L. Chin, Phys. Rev. Lett. 80, 4406 (1998). [CrossRef]
  3. M. Raytchev, E. Pandurski, I. Buchvarov, C. Modrakowski, and T. Fiebig, J. Phys. Chem. A 107, 4592 (2003). [CrossRef]
  4. A. Baltuska, T. Fuji, and T. Kobayashi, Opt. Lett. 27, 306 (2002). [CrossRef]
  5. P. Tzankov, T. Fiebig, and I. Buchvarov, Appl. Phys. Lett. 82, 517 (2003). [CrossRef]
  6. A. L. Gaeta, Phys. Rev. Lett. 84, 3582 (2000). [CrossRef] [PubMed]
  7. H. Ward and L. Berge, Phys. Rev. Lett. 90, 053901 (2003). [CrossRef] [PubMed]
  8. V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, Appl. Phys. B 77, 149 (2003). [CrossRef]
  9. J. E. Rothenberg, Opt. Lett. 17, 1340 (1992). [CrossRef] [PubMed]
  10. N. Bloembergen, Opt. Commun. 8, 285 (1973). [CrossRef]
  11. M. Kolesik, G. Katona, J. V. Moloney, and E. M. Wright, Appl. Phys. B 77, 185 (2003). [CrossRef]
  12. A. Couairon, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Phys. Rev. B 71, 125435 (2005). [CrossRef]
  13. I. Golub, Opt. Lett. 15, 305 (1990). [CrossRef] [PubMed]
  14. K. Midorikawa, H. Kawano, A. Suda, C. Nagura, and M. Obara, Appl. Phys. Lett. 80, 923 (2002). [CrossRef]
  15. M. Kolesik, J. V. Moloney, and E. M. Wright, Phys. Rev. E 64, 046607 (2001). [CrossRef]
  16. A. K. Dharmadhikari, E. A. Rajgara, and D. Mathur, Opt. Lett. 31, 2184 (2006). [CrossRef] [PubMed]
  17. P. Tzankov, I. Buchvarov, and T. Fiebig, Opt. Commun. 203, 107 (2002). [CrossRef]
  18. D. C. Hutchings, Opt. Lett. 20, 1607 (1995). [CrossRef] [PubMed]
  19. D. C. Hutchings and B. S. Wherrett, Phys. Rev. B 52, 8150 (1995). [CrossRef]
  20. Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).
  21. ρ(λ)∼[sin2(ΔphivNL(λ)/2)sin2(2α)]−1∼(ΔphivNL(λ)/2)−2∼[(2π/λ)LΔnbrn(α)]−2∼λ2, where ΔphivNL(λ) is the nonlinear phase shift, λ is the wavelength, L is the interaction length, and Δnbrn is the effective nonlinear refraction index of the induced birefringence.
  22. A. Couairon, E. Gaizauskas, D. Faccio, A. Dubietis, and P. Di Trapani, Phys. Rev. E 73, 016608 (2006). [CrossRef]
  23. The obtained ratio between the WL energy thresholds for circular and linear polarization is ∼3/2, which matches the ratio between the corresponding nonlinear indices of refraction (n2). It is relevant for our experimental observations and also that for other groups that WLG threshold power is slightly above the SF threshold, i.e., it is also proportional to ∼1/n2.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited