OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 11 — Jun. 1, 2007
  • pp: 1584–1586

Wavefront sensing with random amplitude mask and phase retrieval

Arun Anand, Giancarlo Pedrini, Wolfgang Osten, and Percival Almoro  »View Author Affiliations

Optics Letters, Vol. 32, Issue 11, pp. 1584-1586 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A light beam with an ideal wavefront that is transmitted or reflected from an object is modified by different characteristics of the object such as shape, refractive index, density, or temperature. Wavefront sensing therefore yields valuable information about the system or the changes happening to the system. A new method for wavefront sensing using a random amplitude mask and a phase retrieval method based on the Rayleigh–Sommerfeld wave propagation equation is described. The proposed method has many potential applications ranging from phase contrast imaging and measurement of lens aberration to shape measurement of three-dimensional objects.

© 2007 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(050.1960) Diffraction and gratings : Diffraction theory
(100.3010) Image processing : Image reconstruction techniques
(100.5070) Image processing : Phase retrieval

ToC Category:
Coherence and Statistical Optics

Original Manuscript: February 21, 2007
Revised Manuscript: March 29, 2007
Manuscript Accepted: March 29, 2007
Published: May 18, 2007

Arun Anand, Giancarlo Pedrini, Wolfgang Osten, and Percival Almoro, "Wavefront sensing with random amplitude mask and phase retrieval," Opt. Lett. 32, 1584-1586 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, Nature 161, 777 (1947). [CrossRef]
  2. J. M. Geary, Introduction to Wavefront Sensors (SPIE, 1995). [CrossRef]
  3. K. Buse and M. Luennemann, Phys. Rev. Lett. 85, 3385 (2000). [CrossRef] [PubMed]
  4. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, Opt. Lett. 23, 817 (1998). [CrossRef]
  5. J. Wu, U. Weierstall, and J. C. H. Spence, Nat. Mater. 4, 912 (2005). [CrossRef] [PubMed]
  6. K. A. Nugent, T. E. Gureyev, D. F. Cookson, D. Paganin, and Z. Barena, Phys. Rev. Lett. 77, 2961 (1996). [CrossRef] [PubMed]
  7. J. R. Fienup, Appl. Opt. 21, 2758 (1982). [CrossRef] [PubMed]
  8. E. Kolenovic, J. Opt. Soc. Am. A 22, 899 (2005). [CrossRef]
  9. P. Cloetens, W. Ludwig, J. Baruchel, D. Van Dyck, J. Van Landyut, J. P. Guigay, and M. Schlenker, Appl. Phys. Lett. 75, 2912 (1999). [CrossRef]
  10. P. Almoro, G. Pedrini, and W. Osten., Appl. Opt. 45, 8596 (2006). [CrossRef] [PubMed]
  11. P. Almoro, G. Pedrini, and W. Osten., Opt. Lett. 32, 733 (2007). [CrossRef] [PubMed]
  12. Q. B. Li, and F. P. Chiang, Appl. Opt. 31, 6287 (1992). [CrossRef] [PubMed]
  13. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  14. A. Anand and V. K. Chhaniwal, Appl. Opt. 46, 2022 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited