OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 12 — Jun. 15, 2007
  • pp: 1605–1607

High-resolution measurement of fiber length by using a mode-locked fiber laser configuration

Y. L. Hu, L. Zhan, Z. X. Zhang, S. Y. Luo, and Y. X. Xia  »View Author Affiliations

Optics Letters, Vol. 32, Issue 12, pp. 1605-1607 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple method to precisely measure fiber length has been experimentally demonstrated by using a mode-locked fiber laser configuration. Since the transit time in a cavity is exactly proportional to the cavity length, it is easy to obtain the fiber length from the generation of mode-locked pulses in the fiber laser with a long-range nonlinear optical loop mirror that includes the measured fiber. Our new method has a large measurement range, over hundreds of kilometers, and a high resolution, of the order of centimeters, as well as no measurement dead zone.

© 2007 Optical Society of America

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 3, 2007
Revised Manuscript: March 27, 2007
Manuscript Accepted: April 3, 2007
Published: June 5, 2007

Y. L. Hu, L. Zhan, Z. X. Zhang, S. Y. Luo, and Y. X. Xia, "High-resolution measurement of fiber length by using a mode-locked fiber laser configuration," Opt. Lett. 32, 1605-1607 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. L. Philen, I. A. White, J. F. Kuhl, and S. C. Mettler, IEEE Trans. Microwave Theory Tech. MTT-30, 1487 (1982). [CrossRef]
  2. Y. Gottesman, E. V. K. Rao, H. Sillard, and J. Jacquet, J. Lightwave Technol. 20, 489 (2002). [CrossRef]
  3. R. Passy, N. Gisin, J. P. von der Weid, and H. H. Gilgen, J. Lightwave Technol. 12, 1622 (1994). [CrossRef]
  4. Y. Katsuyama, J. Lightwave Technol. 13, 6 (1995). [CrossRef]
  5. R. C. Youngquist, S. Carr, and D. E. N. Davies, Opt. Lett. 12, 158 (1987). [CrossRef] [PubMed]
  6. K. Takada, H. Yamada, Y. Hibino, and S. Mitachi, Electron. Lett. 31, 1565 (1995). [CrossRef]
  7. H. Ghafoori-Shiraz and T. Okoshi, Opt. Lett. 10, 160 (1985). [CrossRef] [PubMed]
  8. H. H. Gilgen, R. P. Novak, R. P. Salathe, W. Hodel, and P. Beaud, J. Lightwave Technol. 7, 1225 (1989). [CrossRef]
  9. B. Jia and L. Hu, Microwave Opt. Technol. Lett. 22, 231 (1999). [CrossRef]
  10. B. Qi, A. Tausz, L. Qian, and H. K. Lo, Opt. Lett. 30, 3287 (2005). [CrossRef]
  11. N. Finlayson, B. K. Nayar, and N. J. Doran, Electron. Lett. 27, 1209 (1991). [CrossRef]
  12. Y. J. Song, L. Zhan, J. H. Ji, Q. Li, and Y. X. Xia, 31st European Conference on Optical Communication (ECOC) Proceedings (Institution of Electrical Engineers, 2005), Vol. 3, paper We4.P.064, p. 629.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited