OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 12 — Jun. 15, 2007
  • pp: 1764–1766

Goos–Hänchen induced vector eigenmodes in a dome cavity

David H. Foster, Andrew K. Cook, and Jens U. Nöckel  »View Author Affiliations

Optics Letters, Vol. 32, Issue 12, pp. 1764-1766 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate numerically calculated electromagnetic eigenmodes of a 3D dome cavity resonator that owe their shape and character entirely to the Goos–Hänchen effect. The V-shaped modes, which have purely TE or TM polarization, are well described by a 2D billiard map with the Goos–Hänchen shift included. A phase space plot of this augmented billiard map reveals a saddle-node bifurcation; the stable periodic orbit that is created in the bifurcation corresponds to the numerically calculated eigenmode, dictating the angle of its “V.” A transition from a fundamental Gaussian to a TM V mode has been observed as the cavity is lengthened to become nearly hemispherical.

© 2007 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(260.2110) Physical optics : Electromagnetic optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: February 23, 2007
Revised Manuscript: April 12, 2007
Manuscript Accepted: April 26, 2007
Published: June 14, 2007

David H. Foster, Andrew K. Cook, and Jens U. Nöckel, "Goos-Hänchen induced vector eigenmodes in a dome cavity," Opt. Lett. 32, 1764-1766 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Goos and H. Hänchen, Ann. Phys. 1, 333 (1947). [CrossRef]
  2. N. H. Tran, L. Dutriaux, P. Balcou, A. Le Floch, and F. Bretenaker, Opt. Lett. 20, 1233 (1995). [CrossRef] [PubMed]
  3. F. Bretenaker, A. Le Floch, and L. Dutriaux, Phys. Rev. Lett. 68, 931 (1992). [CrossRef] [PubMed]
  4. L. Dutriaux, A. Le Floch, and F. Bretenaker, J. Opt. Soc. Am. B 12, 2283 (1992). [CrossRef]
  5. D. Q. Chowdhurry, D. H. Leach, and R. K. Chang, J. Opt. Soc. Am. A 11, 1110 (1994). [CrossRef]
  6. D. I. Babic, Y. Chung, N. Dagli, and J. E. Bowers, IEEE J. Quantum Electron. 29, 1950 (1993). [CrossRef]
  7. D. H. Foster and J. U. Nöckel, Opt. Commun. 234, 351 (2004). [CrossRef]
  8. K. V. Artmann, Ann. Phys. 2, 87 (1948). [CrossRef]
  9. W. Nasalski, J. Opt. Soc. Am. A 13, 172 (1996). [CrossRef]
  10. D. H. Foster and J. U. Nöckel, Opt. Lett. 29, 2788 (2004). [CrossRef] [PubMed]
  11. D. H. Foster, 'Fabry-Perot and whispering gallery modes in realistic resonator models,' Ph.D. thesis, (University of Oregon, 2006), http://hdl.handle.net/1794/3778.
  12. R. Blümel, T. M. Antonsen, B. Georgeot, E. Ott, and R. E. Prange, Phys. Rev. Lett. 76, 2476 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited