OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 13 — Jul. 1, 2007
  • pp: 1788–1790

Slow light in bacteriorhodopsin solution using coherent population oscillations

Chandra S. Yelleswarapu, Reji Philip, Francisco J. Aranda, Brian R. Kimball, and D. V. G. L. N. Rao  »View Author Affiliations

Optics Letters, Vol. 32, Issue 13, pp. 1788-1790 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (193 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Slow light is demonstrated in liquid phase in an aqueous bacteriorhodopsin (bR) solution at room temperature. Group velocity as low as 3 m s (all the way to c) is achieved by exploiting the photoisomerization property of bR for coherent population oscillations. Slow light in the liquid phase offers several advantages over solids or vapors for a variety of applications: (i) shorter lifetimes of the M state facilitate slow light at higher modulation frequencies, (ii) convection makes it possible to obtain large signal delays even at high input powers, and (iii) solution concentration is another convenient parameter to vary the signal delay over a wide range.

© 2007 Optical Society of America

OCIS Codes
(160.4890) Materials : Organic materials
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(260.5210) Physical optics : Photoionization

ToC Category:
Nonlinear Optics

Original Manuscript: February 15, 2007
Revised Manuscript: April 19, 2007
Manuscript Accepted: April 26, 2007
Published: June 18, 2007

Chandra S. Yelleswarapu, Reji Philip, Francisco J. Aranda, Brian R. Kimball, and D. V. G. L. N. Rao, "Slow light in bacteriorhodopsin solution using coherent population oscillations," Opt. Lett. 32, 1788-1790 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, in Progress in Optics, E.Wolf, ed. (Elsevier, 2002), Vol. 43.
  2. A. Kasapi, M. Jain, Y. G. Yin, and S. E. Harris, Phys. Rev. Lett. 74, 2447 (1995). [CrossRef] [PubMed]
  3. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takshashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  4. K. Lee and N. M. Lawandy, Appl. Phys. Lett. 78, 703 (2001). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903 (2003). [CrossRef] [PubMed]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  7. E. Podivilov, B. Sturman, A. Shumeluk, and S. Odoulov, Phys. Rev. Lett. 91, 083902 (2003). [CrossRef] [PubMed]
  8. P. C. Ku, F. Sedwigck, C. J. Chang-Hasnain, P. Palinginis, H. L. Wang, T. Li, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004). [CrossRef] [PubMed]
  9. P. Wu and D. V. G. L. N. Rao, Phys. Rev. Lett. 95, 253601 (2005). [CrossRef] [PubMed]
  10. N. Hampp, R. Thoma, D. Oesterhelt, and C. Bräuchle, Appl. Opt. 31, 1834 (1992). [CrossRef] [PubMed]
  11. A. Foanrev, A. L. Milkaelian, B. V. Kryzhanovsky, and V. K. Salakhutdinov, Opt. Lett. 25, 1080 (2000). [CrossRef]
  12. S. Kothapalli, P. Wu, C. S. Yelleswarapu, and D. V. G. L. N. Rao, J. Biomed. Opt. 10, 044028 (2005). [CrossRef]
  13. D. V. G. L. N. Rao, F. J. Aranda, B. J. Wiley, J. A. Akkara, D. L. Kaplan, and J. F. Roach, Appl. Phys. Lett. 63, 1489 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited