OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 13 — Jul. 1, 2007
  • pp: 1800–1802

Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient

Ming Han and Anbo Wang  »View Author Affiliations


Optics Letters, Vol. 32, Issue 13, pp. 1800-1802 (2007)
http://dx.doi.org/10.1364/OL.32.001800


View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically investigate the feasibility of using a surface layer with a negative thermo-optic coefficient to compensate the thermal drift of a resonant frequency in an optical microresonator. Taking a fused-silica microsphere as an example, our analysis has shown that the thermal drift of a whisper-gallery mode can be fully compensated by such a surface layer. We analyze and compare the compensation performances by using different materials as the surface layer.

© 2007 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(160.6840) Materials : Thermo-optical materials
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

History
Original Manuscript: March 6, 2007
Revised Manuscript: April 23, 2007
Manuscript Accepted: April 24, 2007
Published: June 19, 2007

Citation
Ming Han and Anbo Wang, "Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient," Opt. Lett. 32, 1800-1802 (2007)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-13-1800

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited