OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 13 — Jul. 1, 2007
  • pp: 1800–1802

Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient

Ming Han and Anbo Wang  »View Author Affiliations

Optics Letters, Vol. 32, Issue 13, pp. 1800-1802 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically investigate the feasibility of using a surface layer with a negative thermo-optic coefficient to compensate the thermal drift of a resonant frequency in an optical microresonator. Taking a fused-silica microsphere as an example, our analysis has shown that the thermal drift of a whisper-gallery mode can be fully compensated by such a surface layer. We analyze and compare the compensation performances by using different materials as the surface layer.

© 2007 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(160.6840) Materials : Thermo-optical materials
(230.5750) Optical devices : Resonators

ToC Category:
Integrated Optics

Original Manuscript: March 6, 2007
Revised Manuscript: April 23, 2007
Manuscript Accepted: April 24, 2007
Published: June 19, 2007

Ming Han and Anbo Wang, "Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient," Opt. Lett. 32, 1800-1802 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996). [CrossRef] [PubMed]
  2. V. S. Ilchenko, M. L. Gorodetsky, X. S. Yao, and L. Maleki, Opt. Lett. 26, 256 (2001). [CrossRef]
  3. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002). [CrossRef] [PubMed]
  4. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998). [CrossRef]
  5. S. Schiller and R. L. Byer, Opt. Lett. 16, 1138 (1991). [CrossRef] [PubMed]
  6. H. Mabuchi and A. C. Doherty, Science 298, 1372 (2002). [CrossRef] [PubMed]
  7. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 80, 4057 (2002). [CrossRef]
  8. I. M. White, N. M. Hanumegowda, and X. D. Fan, Opt. Lett. 30, 3189 (2005). [CrossRef] [PubMed]
  9. T. Carmon, L. Yang, and K. J. Vahala, Opt. Express 12, 4742 (2004). [CrossRef] [PubMed]
  10. A. A. Savchenkov, V. S. Ilchenko, A. B. Matsko, and L. Maleki, Phys. Rev. A 70, 051804 (2004). [CrossRef]
  11. I. Teraoka and S. Arnold, J. Opt. Soc. Am. B 23, 1434 (2006). [CrossRef]
  12. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, Appl. Phys. Lett. 89, 223901 (2006). [CrossRef]
  13. H. Hirota, M. Itoh, M. Oguma, and Y. Hibino, IEEE Photon. Technol. Lett. 17, 375 (2005). [CrossRef]
  14. N. J. Dudney, J. Vac. Sci. Technol. A 16, 615 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited