Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Optical generation of a precise microwave frequency comb by harmonic frequency locking

Not Accessible

Your library or personal account may give you access

Abstract

A semiconductor laser under negative optoelectronic feedback is applied to the generation of a microwave frequency comb through the nonlinear dynamics. The laser system is operated in a harmonic frequency-locked pulsing state, where its power spectrum is a microwave frequency comb that consists of multiples of a locking frequency. Every frequency component of the comb can be simultaneously stabilized by simply injecting an external microwave modulation at any component of the comb. This phenomenon can be viewed as a kind of microwave injection locking of the laser dynamics.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser

Yu-Shan Juan and Fan-Yi Lin
Opt. Express 17(21) 18596-18605 (2009)

Photonic generation of high-performance microwave frequency combs using an optically injected semiconductor laser with dual-loop optoelectronic feedback

Renheng Zhang, Pei Zhou, Kunxi Li, Hualong Bao, and Nianqiang Li
Opt. Lett. 46(18) 4622-4625 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.