OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 13 — Jul. 1, 2007
  • pp: 1923–1925

Infrared frequency upconverter for high-sensitivity imaging of gas plumes

Masaharu Imaki and Takao Kobayashi  »View Author Affiliations

Optics Letters, Vol. 32, Issue 13, pp. 1923-1925 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (330 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A remote methane detection system has been developed using a single-frequency tunable optical parametric oscillator at 3.4 μ m infrared wavelength. The infrared received light is converted by a frequency upconverter with a strong pump beam to near-infrared wavelength at 0.81 μ m and detected by a sensitive photomultiplier. The conversion efficiency of the upconverter was 40% for the backscatter signal from a topographic target, and the detector sensitivity was 11 times higher than that of the cooled InAs detector. By raster scanning the infrared beam, imaging was realized for the methane gas plume with an accuracy of 20 parts in 10 6 m at the range of 2 m .

© 2007 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(120.0280) Instrumentation, measurement, and metrology : Remote sensing and sensors
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(280.3420) Remote sensing and sensors : Laser sensors

ToC Category:
Remote sensing and sensors

Original Manuscript: February 5, 2007
Revised Manuscript: April 13, 2007
Manuscript Accepted: May 1, 2007
Published: June 25, 2007

Masaharu Imaki and Takao Kobayashi, "Infrared frequency upconverter for high-sensitivity imaging of gas plumes," Opt. Lett. 32, 1923-1925 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Baumgartner and R. L. Byer, Appl. Opt. 17, 3555 (1978). [CrossRef] [PubMed]
  2. M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142, 153 (1997). [CrossRef]
  3. T. Iseki, Environ. Geol. 44, 1064 (2004). [CrossRef]
  4. T. J. Kulp, S. E. Bisson, R. P. Bambha, T. A. Reichardt, U. B. Goers, K. W. Aniolek, D. A. V. Kliner, B. A. Richman, K. M. Armstrong, R. Sommers, R. Schmitt, P. E. Powers, O. Levi, T. Pinguet, M. Fejer, J. P. Koplow, L. Goldberg, and T. G. Mcrae, Appl. Phys. B 75, 317 (2002). [CrossRef]
  5. J. Warner, Appl. Phys. Lett. 12, 222 (1968). [CrossRef]
  6. J. E. Midwinter, Appl. Phys. Lett. 12, 68 (1968). [CrossRef]
  7. R. A. Andrews, IEEE J. Quantum Electron. QE-4, 68 (1970). [CrossRef]
  8. T. Itabe and J. L. Bufton, Appl. Opt. 21, 2381 (1982). [CrossRef] [PubMed]
  9. C. D. Brewer, B. D. Duncan, and E. A. Watoson, Opt. Eng. 41, 1577 (2002). [CrossRef]
  10. M. A. Albota and F. N. C. Wong, Opt. Lett. 29, 1449 (2004). [CrossRef] [PubMed]
  11. O. Tadanaga, T. Yanagawa, Y. Nishida, H. Miyazawa, K. Magari, M. Asobe, and H. Suzuki, Jpn. J. Appl. Phys. Part 1 45, 239 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited