OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 14 — Jul. 15, 2007
  • pp: 2064–2066

Temperature compensation of multimode-interference-based fiber devices

Enbang Li  »View Author Affiliations

Optics Letters, Vol. 32, Issue 14, pp. 2064-2066 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (191 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-mode–multimode–single-mode (SMS) fiber structures have been demonstrated to be a simple and effective way to realize multimode interference (MMI) in optical fibers. The temperature dependence of the spectral characteristics of SMS devices is investigated. By utilizing the feature that the response spectra of SMS devices with opposite polarities to temperature and axial tensile strain, I demonstrate that temperature compensation of SMS devices can be realized by using materials with a proper coefficient of thermal expansion. A temperature stability of 1.0 pm ° C has been experimentally demonstrated with a ceramic as the packaging material.

© 2007 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(230.7370) Optical devices : Waveguides

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 2, 2007
Revised Manuscript: May 22, 2007
Manuscript Accepted: May 22, 2007
Published: July 13, 2007

Enbang Li, "Temperature compensation of multimode-interference-based fiber devices," Opt. Lett. 32, 2064-2066 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Mackie and A. W. Lee, Appl. Opt. 43, 6609 (2004). [CrossRef]
  2. L. B. Soldano and E. C. M. Pennings, J. Lightwave Technol. 13, 615 (1995). [CrossRef]
  3. M. Takenaka and Y. Nakano, IEEE Photon. Technol. Lett. 15, 1035 (2003). [CrossRef]
  4. C. Sookdhis, T. Mei, and H. S. Djie, IEEE Photon. Technol. Lett. 17, 822 (2005). [CrossRef]
  5. W. S. Mohammed, P. W. E. Smith, and X. Gu, Opt. Lett. 17, 2547 (2006). [CrossRef]
  6. Q. Wang and G. Farrell, Microwave Opt. Technol. Lett. 48, 900 (2006). [CrossRef]
  7. A. Kumar, R. K. Varshney, S. Antony C., and P. Sharma, Opt. Commun. 219, 215 (2003). [CrossRef]
  8. A. Kumar, R. K. Varshney, and R. Kumar, Opt. Commun. 232, 239 (2004). [CrossRef]
  9. W. S. Mohammed, A. Mehta, and E. G. Johnson, J. Lightwave Technol. 22, 469 (2004). [CrossRef]
  10. E. B. Li, X. L. Wang, and C. Zhang, Appl. Phys. Lett. 89, 091119 (2006). [CrossRef]
  11. R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001), pp. 263-324.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited