OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campilo
  • Vol. 32, Iss. 17 — Sep. 1, 2007
  • pp: 2583–2585

Multishrinkage: analytical form for a Bayesian wavelet estimator based on the multivariate Laplacian model

Shan Tan and Licheng Jiao  »View Author Affiliations

Optics Letters, Vol. 32, Issue 17, pp. 2583-2585 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a novel multivariate Bayesian wavelet estimator of a simple analytical form that is computationally effective for the image denoising problem. The estimator is derived from the multivariate Laplacian model by using the maximum a posteriori rule. We find the multivariate estimator produces restoration results of high quality, both visually and in terms of peak signal-to-noise ratio.

© 2007 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.7410) Image processing : Wavelets

ToC Category:
Image Processing

Original Manuscript: April 30, 2007
Revised Manuscript: July 10, 2007
Manuscript Accepted: July 26, 2007
Published: August 22, 2007

Shan Tan and Licheng Jiao, "Multishrinkage: analytical form for a Bayesian wavelet estimator based on the multivariate Laplacian model," Opt. Lett. 32, 2583-2585 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. E. P. Simoncelli, in Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers (IEEE, 1997), pp. 673-678.
  2. J. Portilla, V. Strela, M. J. Wainwright, and E. P. Simoncelli, IEEE Trans. Image Process. 12, 1338 (2003). [CrossRef]
  3. S. Tan and L. C. Jiao, "Multivariate statistical models for image denoising in the wavelet domain," Int. J. Comput. Vis. (to be published).
  4. L. Sendur and I. W. Selesnick, IEEE Trans. Signal Process. 50, 2744 (2002). [CrossRef]
  5. L. Sendur and I. W. Selesnick, IEEE Signal Process. Lett. 9, 438 (2002). [CrossRef]
  6. D. N. Anderson, Stat. Probab. Lett. 14, 333 (1992). [CrossRef]
  7. T. Eltoft, T. Kim, and T. Lee, IEEE Signal Process. Lett. 13, 300 (2006). [CrossRef]
  8. M.Abramowitz and C.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 925-964.
  9. T. T. Cai and B. W. Silverman, Sankhya, Ser. B 63, 127 (2001).
  10. M. Elad and M. Aharon, IEEE Trans. Image Process. 15, 3736 (2006). [CrossRef]
  11. K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Proc. SPIE 6064, 6064A-30 (2006).
  12. S. Tan and L. C. Jiao, J. Opt. Soc. Am. A 23, 2449 (2006). [CrossRef]
  13. D. D.-Y. Po and M. N. Do, IEEE Trans. Image Process. 15, 610 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited