OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J. Campilo
  • Vol. 32, Iss. 17 — Sep. 1, 2007
  • pp: 2587–2589

Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences

J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero  »View Author Affiliations


Optics Letters, Vol. 32, Issue 17, pp. 2587-2589 (2007)
http://dx.doi.org/10.1364/OL.32.002587


View Full Text Article

Enhanced HTML    Acrobat PDF (240 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel method to produce optical waveguides is demonstrated for lithium niobate ( Li Nb O 3 ) . It is based on electronic excitation damage by swift ions, i.e., with energies at approximately 1 MeV amu or above. The new technique uses high-energy medium-mass ions, such as Cl, with electronic stopping powers above the threshold value for amorphization ( 5 6 keV nm ) , reaching the maximum value a few micrometers inside the crystal. At the ultralow fluence regime ( 10 12 10 13 cm 2 ) an effective nanostructured medium is obtained that behaves as an optical waveguide where light propagates transversally to the amorphous nanotracks created by every single impact. The method implies a reduction of 4 orders of magnitude with respect to He implantation. The optical waveguides present reasonable losses ( 10 dB cm ) and significant second-harmonic generation (SHG) and electro-optic (EO) responses ( > 50 % bulk) for the lowest fluences.

© 2007 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(130.4310) Integrated optics : Nonlinear
(160.3730) Materials : Lithium niobate
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Integrated Optics

History
Original Manuscript: May 4, 2007
Revised Manuscript: July 17, 2007
Manuscript Accepted: July 28, 2007
Published: August 23, 2007

Citation
J. Olivares, A. García-Navarro, G. García, A. Méndez, F. Agulló-López, A. García-Cabañes, M. Carrascosa, and O. Caballero, "Nonlinear optical waveguides generated in lithium niobate by swift-ion irradiation at ultralow fluences," Opt. Lett. 32, 2587-2589 (2007)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-17-2587


Sort:  Year  |  Journal  |  Reset  

References

  1. J. F. Ziegler, Ion Implantation Technology (North-Holland, 1992).
  2. P. D. Townsend, P. J. Chandler, and L. Zhang, Optical Effects of Ion Implantation (Cambridge University Press, 1994). [CrossRef]
  3. R. V. Schmidt and I. P. Kaminow, Appl. Phys. Lett. 25, 458 (1974). [CrossRef]
  4. W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, Opt. Lett. 16, 995 (1991). [CrossRef] [PubMed]
  5. M. P. de Micheli, D. B. Ostrowski, Yu. N. Korkhisko, and P. Basi, Insulating Materials for Optoelectronics: New Developments (World-Scientific, 1995).
  6. J. M. Cabrera, J. Olivares, M. Carrascosa, J. Rams, R. Müller, and E. Dieguez, Adv. Phys. 45, 349 (1996). [CrossRef]
  7. Properties of Lithium Niobate, EMIS Data Review Series (INSPEC, 2002).
  8. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, Appl. Phys. Lett. 86, 183501 (2005). [CrossRef]
  9. A. García-Navarro, J. Olivares, G. García, F. Agulló-López, S. García-Blanco, C. Merchant, and J. Stewart Aitchison, Nucl. Instrum. Methods Phys. Res. B 249, 177 (2006). [CrossRef]
  10. B. Canut and S. M. M. Ramos, Radiat. Eff. Defects Solids 145, 1 (1998). [CrossRef]
  11. A. Meftah, J. M. Constantini, N. Khalfaoui, S. Boudjadar, J. P. Soquert, F. Studer, and M. Toulemonde, Nucl. Instrum. Methods Phys. Res. B 237, 563 (2005). [CrossRef]
  12. J. Olivares, G. García, F. Agulló-López, F. Agulló-Rueda, A. Kling, and J. C. Soares, Appl. Phys. A 81, 1465 (2005). [CrossRef]
  13. J. Olivares, A. García-Navarro, G. García, A. Méndez, and F. Agulló-López, Appl. Phys. Lett. 89, 071923 (2006). [CrossRef]
  14. J-H. Zollondz and A. Weidinger, Nucl. Instrum. Methods Phys. Res. B 225, 178 (2004). [CrossRef]
  15. www.uam.es/cmam
  16. J. Rams and J. M. Cabrera, J. Mod. Opt. 47, 1659 (2000).
  17. A. Méndez, G. De la Paliza, A. García-Cabañes, and J. M. Cabrera, Appl. Phys. B 73, 485 (2001).
  18. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, J. Opt. Soc. Am. B 14, 2268 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited