OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 18 — Sep. 15, 2007
  • pp: 2698–2700

On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls

Jeffrey H. Shapiro and Franco N.C. Wong  »View Author Affiliations

Optics Letters, Vol. 32, Issue 18, pp. 2698-2700 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (200 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a method for generating single photons on demand by means of a modular array of spontaneous parametric downconverters that are mediated by electro-optic polarization controls. Our scheme allows easy addition of downconverter modules to improve single-photon generation performance while simultaneously further suppressing multiphoton events. We estimate that a single-photon generation probability of over 60% per pulse with a multiphoton probability of 1% is achievable with currently available technology. This on-demand source may significantly improve the performance of quantum key distribution, quantum communication, and quantum computation systems.

© 2007 Optical Society of America

OCIS Codes
(270.5290) Quantum optics : Photon statistics
(190.4975) Nonlinear optics : Parametric processes
(270.5568) Quantum optics : Quantum cryptography

ToC Category:
Quantum Optics

Original Manuscript: June 15, 2007
Revised Manuscript: July 27, 2007
Manuscript Accepted: August 12, 2007
Published: September 6, 2007

Jeffrey H. Shapiro and Franco N. Wong, "On-demand single-photon generation using a modular array of parametric downconverters with electro-optic polarization controls," Opt. Lett. 32, 2698-2700 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India (IEEE, 1984), p. 175. [PubMed]
  2. H.-K. Lo, X. Ma, and K. Chen, Phys. Rev. Lett. 94, 230504 (2005). [CrossRef] [PubMed]
  3. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, Science 290, 2282 (2000). [CrossRef] [PubMed]
  4. B. Lounis and W. E. Moerner, Nature 407, 491 (2000). [CrossRef] [PubMed]
  5. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kimble, Phys. Rev. Lett. 92, 213601 (2004). [CrossRef] [PubMed]
  6. A. T. Black, J. K. Thompson, and V. Vuletic, Phys. Rev. Lett. 95, 133601 (2005). [CrossRef] [PubMed]
  7. A. L. Migdall, D. Branning, and S. Castelletto, Phys. Rev. A 66, 053805 (2002). [CrossRef]
  8. A. L. Migdall, S. Castelletto, and M. Ware, Proc. SPIE 5105, 294 (2003). [CrossRef]
  9. T. B. Pittman and J. D. Franson, Phys. Rev. A 66, 062302 (2002). [CrossRef]
  10. E. Jeffrey, N. A. Peters, and P. G. Kwiat, New J. Phys. 6, 100 (2004). [CrossRef]
  11. The propagation time from PBS1 to the EOM in Fig. is chosen to match the optical plus circuit delays in controlling the EOM's bias voltage.
  12. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, Phys. Rev. A 71, 061903(R) (2005). [CrossRef]
  13. F. N. C. Wong, J. H. Shapiro, and T. Kim, Laser Phys. 16, 1517 (2006). [CrossRef]
  14. O. Kuzucu, F. N. C. Wong, D. E. Zelmon, S. M. Hegde, T. D. Roberts, and P. Battle, Opt. Lett. 32, 1290 (2007). [CrossRef] [PubMed]
  15. E. J. Mason, M. A. Albota, F. König, and F. N. C. Wong, Opt. Lett. 27, 2115 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited