OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 18 — Sep. 15, 2007
  • pp: 2720–2722

Transition of lasing modes in disordered active photonic crystals

K. C. Kwan, X. M. Tao, and G. D. Peng  »View Author Affiliations

Optics Letters, Vol. 32, Issue 18, pp. 2720-2722 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (131 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The transition from a photonic band-edge laser to a random laser in two-dimensional active photonic crystals is described. The lasing modes in the active photonic crystals shift from the edge of the photonic bandgap to the bulk of the gap when a certain amount of position and size disorder is introduced. The shift of lasing modes is determined with various gain profiles. The results show that the modulation of lasing modes is significant when the lasing transition wavelength overlaps the photonic bandgap.

© 2007 Optical Society of America

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials

ToC Category:

Original Manuscript: June 11, 2007
Revised Manuscript: August 1, 2007
Manuscript Accepted: August 3, 2007
Published: September 11, 2007

K. C. Kwan, X. M. Tao, and G. D. Peng, "Transition of lasing modes in disordered active photonic crystals," Opt. Lett. 32, 2720-2722 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994). [CrossRef]
  2. N. Susa, J. Appl. Phys. 89, 815 (2001). [CrossRef]
  3. S. Nojima, J. Appl. Phys. 90, 545 (2001). [CrossRef]
  4. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999). [CrossRef]
  5. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001). [CrossRef] [PubMed]
  6. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999). [CrossRef]
  7. A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, Appl. Phys. A 69, 111 (1999). [CrossRef]
  8. M. Notomi, H. Suzuki, and T. Tamamura, Appl. Phys. Lett. 78, 1325 (2001). [CrossRef]
  9. Z. Y. Li, X. Zhang, and Z.-Q. Zhang, Phys. Rev. B 61, 15738 (2000). [CrossRef]
  10. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 61, 13458 (2000). [CrossRef]
  11. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, Phys. Rev. B 53, 8340 (1996). [CrossRef]
  12. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999). [CrossRef]
  13. H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, IEEE J. Sel. Top. Quantum Electron. 9, 111 (2003). [CrossRef]
  14. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, Appl. Opt. 35, 640 (1996). [CrossRef] [PubMed]
  15. X. H. Sun, X. M. Tao, P. Xue, and K. C. Kwan, Chin. Phys. Lasers 22, 2568 (2005).
  16. X. Jiang and C. M. Soukoulis, Phys. Rev. Lett. 85, 70 (2000). [CrossRef] [PubMed]
  17. A. Taflove and S. C. Haginess, Computational Electrodynamics: the Finite-Difference Time Domain Method (Artech House, 2000).
  18. P. Sebbah and C. Vanneste, Phys. Rev. B 66, 144202 (2002). [CrossRef]
  19. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, J. Appl. Phys. 78, 1415 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited