OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 19 — Oct. 1, 2007
  • pp: 2864–2866

Standing-wave nonlinear optics in an integrated semiconductor microcavity

Alex Hayat and Meir Orenstein  »View Author Affiliations

Optics Letters, Vol. 32, Issue 19, pp. 2864-2866 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a concept of standing-wave optical frequency conversion in dispersive microcavities theoretically and experimentally, allowing efficient ultracompact nonlinear photonics. We developed a time-dependent model, incorporating the dispersion into the structure of the spatial cavity modes, where the conversion efficiency is enhanced by the optimization of a nonlinear cavity mode overlap. We designed and fabricated integrated double-resonance semiconductor microcavities for standing-wave second-harmonic generation. The measured efficiency exhibits a significant maximum near the cavity resonance owing to the intracavity power enhancement and the dispersion-induced wavelength detuning effect on the mode overlap, in good agreement with our theoretical predictions.

© 2007 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

ToC Category:
Nonlinear Optics

Original Manuscript: July 10, 2007
Revised Manuscript: August 9, 2007
Manuscript Accepted: August 15, 2007
Published: September 27, 2007

Alex Hayat and Meir Orenstein, "Standing-wave nonlinear optics in an integrated semiconductor microcavity," Opt. Lett. 32, 2864-2866 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. S. Venugopal Rao, K. Moutzouris, and M. Ebrahimzadeh, J. Opt. A 6, 569 (2004). [CrossRef]
  2. D. Artigas, E. U. Rafailov, P. Loza-Alvarez, and W. Sibbett, IEEE J. Quantum Electron. 40, 1122 (2004). [CrossRef]
  3. Z. Yang, P. Chak, A. D. Bristow, H. M. van Driel, R. Iyer, J. S. Aitchison, A. L. Smirl, and J. E. Sipe, Opt. Lett. 32, 826 (2007). [CrossRef] [PubMed]
  4. P. Herskind, J. Lindballe, C. Clausen, J. L. Sørensen, and M. Drewsen, Opt. Lett. 32, 268 (2007). [CrossRef] [PubMed]
  5. G. Klemens, C.-H. Chen, and Y. Fainman, Opt. Express 13, 9388 (2005). [CrossRef] [PubMed]
  6. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995). [CrossRef] [PubMed]
  7. G. Leo and E. Rosencher, Opt. Lett. 23, 1823 (1998). [CrossRef]
  8. L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, Phys. Rev. Lett. 97, 173901 (2006). [CrossRef] [PubMed]
  9. J. Jing, S. Feng, R. Bloomer, and O. Pfister, Phys. Rev. A 74, 041804(R) (2006).
  10. K. Banaszek, A. B. U'Ren, and I. A. Walmsley, Opt. Lett. 26, 1367 (2001). [CrossRef]
  11. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, Nature 391, 463 (1998). [CrossRef]
  12. A. De Rossi, V. Berger, G. Leo, and G. Assanto, IEEE J. Quantum Electron. 41, 1293 (2005). [CrossRef]
  13. Z. Y. Ou and Y. J. Lu, Phys. Rev. Lett. 83, 2556 (1999). [CrossRef]
  14. A. Hayat and M. Orenstein, Appl. Phys. Lett. 89, 171108 (2006). [CrossRef]
  15. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997).
  16. A. Fiore, E. Rosencher, V. Berger, and J. Nagle, Appl. Phys. Lett. 67, 3765 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited