OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 20 — Oct. 15, 2007
  • pp: 2966–2968

Two-dimensional Fourier transform spectroscopy in the pump–probe geometry

Lauren P. DeFlores, Rebecca A. Nicodemus, and Andrei Tokmakoff  »View Author Affiliations

Optics Letters, Vol. 32, Issue 20, pp. 2966-2968 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (473 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-dimensional (2D) Fourier transform (FT) infrared spectroscopy is performed by using a collinear pulse-pair pump and probe geometry with conventional optics. Simultaneous collection of the third-order response and pulse-pair timing permit automated phasing and rapid acquisition of 2D absorptive spectra. To demonstrate the ability of this method to capture molecular dynamics, couplings and structure found in the conventional boxcar 2D FT spectroscopy, a series of 2D spectra of a metal carbonyl, and a β-sheet protein are acquired.

© 2007 Optical Society of America

OCIS Codes
(300.2570) Spectroscopy : Four-wave mixing
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms
(300.6420) Spectroscopy : Spectroscopy, nonlinear
(300.6500) Spectroscopy : Spectroscopy, time-resolved
(300.6530) Spectroscopy : Spectroscopy, ultrafast

ToC Category:

Original Manuscript: August 16, 2007
Revised Manuscript: September 10, 2007
Manuscript Accepted: September 11, 2007
Published: October 5, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Lauren P. DeFlores, Rebecca A. Nicodemus, and Andrei Tokmakoff, "Two-dimensional Fourier transform spectroscopy in the pump-probe geometry," Opt. Lett. 32, 2966-2968 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. M. Khalil, N. Demirdoven, and A. Tokmakoff, J. Phys. Chem. A 107, 5258 (2003). [CrossRef]
  2. P. Hamm and R. M. Hochstrasser, in Ultrafast Infrared and Raman Spectroscopy, M.D.Fayer, ed. (Marcel Dekker, 2001), pp. 273-347.
  3. D. M. Jonas, Annu. Rev. Phys. Chem. 54, 397 (2003). [CrossRef]
  4. S. M. Gallagher Faeder and D. M. Jonas, J. Phys. Chem. A 103, 10489 (1999). [CrossRef]
  5. V. Cervetto, J. Helbing, J. Bredenbeck, and P. Hamm, J. Phys. Chem. 121, 5935 (2004). [CrossRef]
  6. S. H. Shim, D. B. Strasfeld, and M. T. Zanni, Proc. Natl. Acad. Sci. U.S.A. 104, 14197 (2007). [CrossRef] [PubMed]
  7. P. Tian, D. Keusters, Y. Suzaki, and W. S. Warren, Science 300, 1553 (2003). [CrossRef] [PubMed]
  8. M. F. Emde, W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 22, 1338 (1997). [CrossRef]
  9. M. Khalil, N. Demirdöven, and A. Tokmakoff, Phys. Rev. Lett. 90, 47401 (2003). [CrossRef]
  10. T. Brixner, I. V. Stoipkin, and G. R. Fleming, Opt. Lett. 29, 884 (2004). [CrossRef] [PubMed]
  11. M. Khalil, N. Demirdöven, and A. Tokmakoff, J. Chem. Phys. 121, 362 (2004). [CrossRef] [PubMed]
  12. N. Demirdöven, C. M. Cheatum, H. S. Chung, M. Khalil, J. Knoester, and A. Tokmakoff, J. Am. Chem. Soc. 126, 7981 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited