OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 21 — Nov. 1, 2007
  • pp: 3128–3130

Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation using GaN-based Bragg reflection waveguide

Ritwick Das and K. Thyagarajan  »View Author Affiliations

Optics Letters, Vol. 32, Issue 21, pp. 3128-3130 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analysis of a high index core symmetric Bragg reflection waveguide (BRW) design based on a Ga N Al x Ga 1 x N system for efficient quasi-phase-matched second-harmonic generation for broadband applications. By choosing the fundamental frequency to be a BRW mode and suitably tailoring the overall dispersion characteristics, the strong dispersion of the second-harmonic mode is partially canceled, leading to phase matching between the fundamental and second-harmonic over a broad range of wavelengths. The crucial interplay between the dispersive behavior of the fundamental and second-harmonic wave manifests as a broad acceptance bandwidth of 33 nm accompanied with appreciable conversion efficiency ( 22.8 % W ) for a 10 mm long waveguide. The impact of tailoring the dispersion characteristics on the conversion efficiency is also discussed.

© 2007 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(230.1480) Optical devices : Bragg reflectors
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Optical Devices

Original Manuscript: August 14, 2007
Revised Manuscript: September 19, 2007
Manuscript Accepted: September 22, 2007
Published: October 22, 2007

Ritwick Das and K. Thyagarajan, "Broadening of the phase-matching bandwidth in quasi-phase-matched second-harmonic generation using GaN-based Bragg reflection waveguide," Opt. Lett. 32, 3128-3130 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992). [CrossRef]
  2. K. R. Parameswaran, R. K. Route, J. R. Kurz, R. V. Roussev, M. M. Fejer, and M. Fujimura, Opt. Lett. 27, 179 (2002). [CrossRef]
  3. M. Cha, Opt. Lett. 23, 250 (1998). [CrossRef]
  4. Z. Zheng and A. M. Weiner, Opt. Lett. 25, 984 (2000). [CrossRef]
  5. S. Ashihara, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003). [CrossRef]
  6. G. Y. Wang and E. M. Garmire, Opt. Lett. 19, 254 (1994). [CrossRef] [PubMed]
  7. N. E. Yu, J. H. Ro, M. Cha, S. Kurimura, and T. Taira, Opt. Lett. 27, 1046 (2002). [CrossRef]
  8. H. Zhu, T. Wang, W. Zheng, P. Yuan, and L. Qian, Opt. Express 12, 2150 (2004). [CrossRef] [PubMed]
  9. J. L. P. Hughes, Y. Wang, and J. E. Sipe, Phys. Rev. B 55, 13630 (1997). [CrossRef]
  10. A. Chowdhury, Hock M. Ng, M. Bhardwaj, and N. G. Weimann, Appl. Phys. Lett. 83, 1077 (2003). [CrossRef]
  11. S. Pezzagna, P. Vennegues, N. Grandjean, A. D. Wieck, and J. Massies, Appl. Phys. Lett. 87, 062106 (2005). [CrossRef]
  12. P. Yeh and A. Yariv, Opt. Commun. 19, 427 (1976). [CrossRef]
  13. B. R. West and A. S. Helmy, Opt. Express 14, 4073 (2006). [CrossRef] [PubMed]
  14. A. S. Helmy, B. Bijlani, and P. Abolghasem, Opt. Lett. 32, 2399 (2007). [CrossRef] [PubMed]
  15. G. M. Laws, E. C. Larkins, I. Harrison, C. Molloy, and D. Somerford, J. Appl. Phys. 89, 1108 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited