OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 22 — Nov. 15, 2007
  • pp: 3355–3357

Digitally enhanced heterodyne interferometry

Daniel A. Shaddock  »View Author Affiliations

Optics Letters, Vol. 32, Issue 22, pp. 3355-3357 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (266 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Combining conventional interferometry with digital modulation allows interferometric signals to be isolated based on their delay. This isolation capability can be exploited in two ways. First, it can improve measurement sensitivity by reducing contamination by spurious interference. Second, it allows multiple optical components to be measured using a single metrology system. Digitally enhanced interferometry employs a pseudorandom noise (PRN) code phase modulated onto the light source. Individual reflections are isolated based on their respective delays by demodulation with the PRN code with a matching delay. The properties of the PRN code determine the degree of isolation while preserving the full interferometric sensitivity determined by the optical wavelength. Analysis and simulation indicate that errors caused by spurious interference can be reduced by a factor inversely proportional to the PRN code length.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.3930) Instrumentation, measurement, and metrology : Metrological instrumentation
(120.3940) Instrumentation, measurement, and metrology : Metrology

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: June 22, 2007
Revised Manuscript: August 15, 2007
Manuscript Accepted: October 8, 2007
Published: November 14, 2007

Daniel A. Shaddock, "Digitally enhanced heterodyne interferometry," Opt. Lett. 32, 3355-3357 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. N. Bobroff, Meas. Sci. Technol. 4, 907 (1993). [CrossRef]
  2. J. Y. Vinet, V. Brisson, S. Braccini, I. Ferrante, L. Pinard, F. Bondu, and E. Tournié, Phys. Rev. D 56, 6085 (1997). [CrossRef]
  3. O. P. Lay and S. Dubovitsky, Opt. Lett. 27, 797 (2002). [CrossRef]
  4. F. Zhao, R. Diaz, G. Kuan, N. Sigrist, and Y. Beregovski, Proc. SPIE 4852, 370 (2003). [CrossRef]
  5. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, IEEE Trans. Commun. 30, 5 (1982). [CrossRef]
  6. K. A. Strain, G. Müller, T. Delker, D. H. Reitze, D. B. Tanner, J. E. Mason, P. A. Willems, D. A. Shaddock, M. B. Gray, C. Mow-Lowry, and D. E. McClelland, Appl. Opt. 42, 1244 (2003). [CrossRef] [PubMed]
  7. H. S. Al-Raweshidy and D. G. Uttamchandani, Proc. SPIE 1314, 342 (1990). [CrossRef]
  8. A. D. Kersey, A. Dandridge, and M. A. Davis, Electron. Lett. 28, 351 (1992). [CrossRef]
  9. O. P. Lay, S. Dubovitsky, D. A. Shaddock, and B. Ware, Opt. Lett. 32, 2933 (2007). [CrossRef] [PubMed]
  10. T. Day, A. C. Nilsson, A. D. Farinas, E. K. Gustafson, C. D. Nabors, and R. L. Byer, Electron. Lett. 25, 810 (1989). [CrossRef]
  11. M. Tinto and J. W. Armstrong, Phys. Rev. D 59, 102003 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited