OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 3 — Feb. 1, 2007
  • pp: 226–228

Evaluation of diffraction catastrophes by using Weniger transformation

Riccardo Borghi  »View Author Affiliations

Optics Letters, Vol. 32, Issue 3, pp. 226-228 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Weniger transformation is a powerful nonlinear sequence transformation that, when applied to the sequence of the partial sums of a divergent or a slowly convergent series, can convert it to a fast-converging sequence. Weniger transformation is not yet well known in optics. Diffraction catastrophes are fundamental tools for evaluating an optical field in proximity to caustics and singularities. The action of the Weniger transformation on the power series representation of diffraction catastrophes is numerically studied for two particular cases, corresponding to the Airy and the Pearcey functions. The obtained results clearly show that Weniger transformation could become a computational tool of great importance for summing several types of series expansions in optics.

© 2007 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(080.1510) Geometric optics : Propagation methods

Original Manuscript: September 11, 2006
Revised Manuscript: October 10, 2006
Manuscript Accepted: October 20, 2006
Published: January 12, 2007

Riccardo Borghi, "Evaluation of diffraction catastrophes by using Weniger transformation," Opt. Lett. 32, 226-228 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. V. Berry, Adv. Phys. 25, 1 (1976). [CrossRef]
  2. M. V. Berry and C. Upstill, in Progress in Optics XVIII, E.Wolf, ed. (Elsevier, 1980), pp. 257-346. [CrossRef]
  3. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999).
  4. M.Abramowitz and I.Stegun, eds., Handbook of Mathematical Functions (Dover, 1972).
  5. T. Pearcey, Philos. Mag. 37, 311 (1946).
  6. J. N. L. Connor and D. Farrelly, J. Chem. Phys. 75, 2831 (1981). [CrossRef]
  7. J. N. L. Connor and P. R. Curtis, J. Phys. A 15, 1179 (1982). [CrossRef]
  8. J. J. Stamnes and B. Spjelkavik, J. Mol. Spectrosc. 30, 1331 (1983).
  9. J. N. L. Connor, P. R. Curtis, and D. Farrelly, J. Phys. A 17, 281 (1984). [CrossRef]
  10. J. N. L. Connor and P. R. Curtis, J. Math. Phys. (Cambridge, Mass.) 25, 2895 (1984).
  11. M. V. Berry and C. Howls, Proc. R. Soc. London, Ser. A 434, 657 (1991). [CrossRef]
  12. N. P. Kirk, J. N. L. Connor, and C. A. Hobbs, Comput. Phys. Commun. 132, 142 (2000). [CrossRef]
  13. M. V. Berry and C. Howls, "Integrals with coalescing saddles," in Digital Library of Mathematical Functions, http://dlmf.nist.gov.
  14. E. J. Weniger, Comput. Phys. Rep. 10, 189 (1989). [CrossRef]
  15. E. J. Weniger, J. Cìzek, and F. Vinette, Phys. Lett. A 156, 169 (1991). [CrossRef]
  16. E. J. Weniger, Phys. Rev. Lett. 77, 2859 (1996). [CrossRef] [PubMed]
  17. J. Cízek, J. Zamastil, and L. Skála, J. Math. Phys. 44, 962-968 (2003). [CrossRef]
  18. R. Borghi and M. Santarsiero, Opt. Lett. 28, 774 (2003). [CrossRef] [PubMed]
  19. E. J. Weniger, J. Math. Phys. 45, 1209 (2004). [CrossRef]
  20. M. A. Alonso and R. Borghi, Opt. Lett. 31, 3028 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited