OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 3 — Feb. 1, 2007
  • pp: 235–237

Comparison of cross-talk effects between colloidal quantum dot and conventional waveguides

Ludan Huang, Chia-Jean Wang, and Lih Y. Lin  »View Author Affiliations

Optics Letters, Vol. 32, Issue 3, pp. 235-237 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present cross-talk calculations for a subdiffraction nanophotonic waveguide that consists of a colloidal quantum dot (QD) array 10 nm in diameter and compare the results with conventional continuous dielectric waveguides, assuming the same 10 nm size as well as a 200 nm cutoff diameter for guided mode. We find that the QD cascade has much lower cross talk than 10 nm dielectric waveguides at an identical separation > 30 nm . Moreover, results for 200 nm dielectric waveguides at a 280 nm gap are comparable with those of QD structures spaced 110 nm apart. Hence the proposed QD device is potentially superior to conventional waveguides in achieving lower cross talk in the subdiffraction regime and provides a new route to achieving high-density photonic integrated circuits.

© 2007 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides

ToC Category:
Integrated Optics

Original Manuscript: July 31, 2006
Revised Manuscript: October 20, 2006
Manuscript Accepted: October 23, 2006
Published: January 12, 2007

Ludan Huang, Chia-Jean Wang, and Lih Y. Lin, "Comparison of cross-talk effects between colloidal quantum dot and conventional waveguides," Opt. Lett. 32, 235-237 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. M. Lieber, Sci. Am. 285, 58 (2001). [CrossRef] [PubMed]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  3. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000). [CrossRef]
  4. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003). [CrossRef] [PubMed]
  5. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002). [CrossRef]
  6. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998). [CrossRef]
  7. T. Yatsui, W. Nomura, and M. Ohtsu, Nano Lett. 5, 2548 (2005). [CrossRef] [PubMed]
  8. C.-J. Wang, L. Y. Lin, and B. A. Parviz, in Proceedings of IEEE LEOS 18th Annual Meeting (IEEE, 2005), pp. 177-178. [CrossRef]
  9. C.-J. Wang, L. Y. Lin, and B. A. Parviz, IEEE J. Sel. Top. Quantum Electron. 11, 500 (2005). [CrossRef]
  10. H. Kogelnik, in Guided-Wave Optoelectronics, 2nd ed., T.Tamir, ed. (Springer-Verlag, 1990), pp. 7-88. [CrossRef]
  11. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, 1995).
  12. C.-J. Wang, L. Huang, B. A. Parviz, and L. Y. Lin, Nano Lett. 6, 2549 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited