OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 4 — Feb. 15, 2007
  • pp: 430–432

Passively mode-locked lasers with 17.2-GHz fundamental-mode repetition rate pulsed by carbon nanotubes

Yong-Won Song, Shinji Yamashita, Chee S. Goh, and Sze Y. Set  »View Author Affiliations

Optics Letters, Vol. 32, Issue 4, pp. 430-432 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (179 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



17.2 GHz , the highest fundamental-mode repetition rate to our knowledge, of a carbon nanotube-based passively mode-locked laser is realized at 1570 nm by employing purified single-walled carbon nanotubes as saturable absorbers. The ultrashort linear laser cavity configured with a 9 mm length is designed and demonstrated with our extremely miniaturized nanotube mode locker and a mirror-coated semiconductor optical amplifier as gain medium. The demonstrated pulsed laser has the inferred temporal pulse width of 14 ps and a 3 dB spectral bandwidth of 0.73 nm .

© 2007 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4400) Nonlinear optics : Nonlinear optics, materials
(320.5550) Ultrafast optics : Pulses

ToC Category:
Ultrafast Optics

Original Manuscript: October 25, 2006
Revised Manuscript: November 20, 2006
Manuscript Accepted: November 21, 2006
Published: January 26, 2007

Yong-Won Song, Shinji Yamashita, Chee S. Goh, and Sze Y. Set, "Passively mode-locked lasers with 17.2-GHz fundamental-mode repetition rate pulsed by carbon nanotubes," Opt. Lett. 32, 430-432 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Fiber-Optic Communications Systems, 3rd ed. (Wiley, 2002). [CrossRef]
  2. H. A. Haus, IEEE J. Sel. Top. Quantum Electron. 6, 1173 (2000). [CrossRef]
  3. R. P. Schmid, T. Schneider, and J. Reif, Appl. Phys. B 74, S205 (2002). [CrossRef]
  4. K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, IEEE J. Sel. Top. Quantum Electron. 10, 147 (2004). [CrossRef]
  5. S. Zhang, F. Lu, X. Dong, P. Shum, X. Yang, X. Zhou, Y. Gong, and C. Lu, Opt. Lett. 30, 2852 (2005). [CrossRef] [PubMed]
  6. G. Lin, M. Wu, and Y. Chang, Opt. Lett. 30, 1834 (2005). [CrossRef] [PubMed]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, IEEE J. Sel. Top. Quantum Electron. 10, 137 (2004). [CrossRef]
  8. S. Yamashita, Y. Inoue, S. Maruyama, Y. Murakami, H. Yaguchi, M. Jablonski, and S. Y. Set, Opt. Lett. 29, 1581 (2004). [CrossRef] [PubMed]
  9. Y. W. Song, S. Y. Set, S. Yamashita, C. S. Goh, and T. Kotake, IEEE Photon. Technol. Lett. 17, 1623 (2005). [CrossRef]
  10. M. Nakazawa, S. Nakahara, T. Hirooka, M. Yoshida, T. Kaino, and K. Komatsu, Opt. Lett. 31, 915 (2006). [CrossRef] [PubMed]
  11. S. C. Zeller, L. Krainer, G. J. Spuhler, R. Paschotta, M. Golling, D. Ebling, K. J. Weingarten, and U. Keller, Electron. Lett. 40, 875 (2004). [CrossRef]
  12. D. Lorenser, A. Aschwanden, H. J. Unold, D. J. Maas, R. Paschotta, U. Keller, E. Gini, and D. Ebling, in Advanced Solid-State Photonics (ASSP) (Optical Society of America, 2005), paper WC4.
  13. S. Yamashita, Y. Inoue, K. Hsu, T. Kotake, H. Yaguchi, D. Tanaka, M. Jablonski, and S. Y. Set, IEEE Photon. Technol. Lett. 17, 750 (2005). [CrossRef]
  14. R. Saito, G. Dresselhaus, and M. S. Dresslhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, 1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited