OSA's Digital Library

Optics Letters

Optics Letters


  • Vol. 32, Iss. 5 — Mar. 1, 2007
  • pp: 527–529

Axial field shaping under high-numerical-aperture focusing

Toufic G. Jabbour and Stephen M. Kuebler  »View Author Affiliations

Optics Letters, Vol. 32, Issue 5, pp. 527-529 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (142 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Kant reported [ J. Mod. Optics 47, 905 (2000) ] a formulation for solving the inverse problem of vector diffraction, which accurately models high-NA focusing. Here, Kant’s formulation is adapted to the method of generalized projections to obtain an algorithm for designing diffractive optical elements (DOEs) that reshape the axial point-spread function (PSF). The algorithm is applied to design a binary phase-only DOE that superresolves the axial PSF with controlled increase in axial sidelobes. An 11-zone DOE is identified that axially narrows the PSF central lobe by 29% while maintaining the sidelobe intensity at or below 52% of the peak intensity. This DOE could improve the resolution achievable in several applications without significantly complicating the optical system.

© 2007 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(100.6640) Image processing : Superresolution
(170.5810) Medical optics and biotechnology : Scanning microscopy

ToC Category:
Optical Design and Fabrication

Original Manuscript: October 16, 2006
Manuscript Accepted: November 21, 2006
Published: February 2, 2007

Virtual Issues
Vol. 2, Iss. 4 Virtual Journal for Biomedical Optics

Toufic G. Jabbour and Stephen M. Kuebler, "Axial field shaping under high-numerical-aperture focusing," Opt. Lett. 32, 527-529 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Ando, T. Yokota, and K. Tanoue, Jpn. J. Appl. Phys., Part 1 32, 5269 (1993). [CrossRef]
  2. S. M. Kuebler and M. Rumi, in Encyclopedia of Modern Optics, R.D.Guenther, D.G.Steel, and L.Bayvel, eds. (Elsevier, 2004), p. 189.
  3. C. M. Blanca and S. W. Hell, Opt. Express 10, 893 (2002). [PubMed]
  4. T. R. M. Sales and G. M. Morris, Opt. Commun. 156, 227 (1998). [CrossRef]
  5. C. J. R. Sheppard and Z. S. Hegedus, J. Opt. Soc. Am. A 5, 643 (1988). [CrossRef]
  6. H. Liu, Y. Yan, D. Yi, and G. Jin, Appl. Opt. 42, 1463 (2003). [CrossRef] [PubMed]
  7. R. Piestun and J. Shamir, Opt. Lett. 19, 771 (1994). [CrossRef] [PubMed]
  8. J. Rosen, Opt. Lett. 19, 369 (1994). [CrossRef] [PubMed]
  9. J. Rosen and A. Yariv, Opt. Lett. 19, 843 (1994). [CrossRef] [PubMed]
  10. T. G. Jabbour and S. M. Kuebler, Opt. Express 14, 1033 (2006). [CrossRef] [PubMed]
  11. B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959). [CrossRef]
  12. R. Kant, J. Mod. Opt. 47, 905 (2000).
  13. A. Levi and H. Stark, J. Opt. Soc. Am. A 1, 932 (1984). [CrossRef]
  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Wiley, 1972).
  15. W. C. Catino, J. L. LoCicero, and H. Stark, J. Opt. Soc. Am. A 15, 68 (1998). [CrossRef]
  16. F. Wyrowski, J. Opt. Soc. Am. A 7, 961 (1990). [CrossRef]
  17. C. Ibáñez-López, G. Saavedra, G. Boyer, and M. Martínez-Corral, Opt. Express 13, 6168 (2005). [CrossRef] [PubMed]
  18. C. Ibáñez-López, G. Saavedra, K. Plamann, G. Boyer, and M. Martínez-Corral, Microsc. Res. Tech. 67, 22 (2005). [CrossRef] [PubMed]
  19. P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited