OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 6 — Mar. 15, 2007
  • pp: 662–664

Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki  »View Author Affiliations

Optics Letters, Vol. 32, Issue 6, pp. 662-664 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Taking up to fourth-order dispersion effects into account, we show that fiber resonators become stable for a large intensity regime. The range of pump intensities leading to modulational instability becomes finite and controllable. Moreover, by computing analytically the thresholds and frequencies of these instabilities, we demonstrate the existence of a new unstable frequency at the primary threshold. This frequency exists for an arbitrary small but nonzero fourth-order dispersion coefficient. Numerical simulations for a low and flattened dispersion photonic crystal fiber resonator confirm analytical predictions and open the way to experimental implementation.

© 2007 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.3100) Nonlinear optics : Instabilities and chaos
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(230.4320) Optical devices : Nonlinear optical devices

ToC Category:
Nonlinear Optics

Original Manuscript: October 11, 2006
Manuscript Accepted: November 29, 2006
Published: February 15, 2007

M. Tlidi, A. Mussot, E. Louvergneaux, G. Kozyreff, A. G. Vladimirov, and M. Taki, "Control and removal of modulational instabilities in low-dispersion photonic crystal fiber cavities," Opt. Lett. 32, 662-664 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993). [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  3. K. Taï, A. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56, 135 (1986). [CrossRef] [PubMed]
  4. A. M. Turing, Philos. Trans. R. Soc. London Ser. B 237, 37 (1952). [CrossRef]
  5. J. E. Rothenberg, Phys. Rev. A 42, 682 (1990). [CrossRef] [PubMed]
  6. P. Kockaert, M. Haelterman, S. Pitois, and G. Millot, Appl. Phys. Lett. 75, 2873 (1999). [CrossRef]
  7. G. Millot, S. Pitois, P. Tchofo Dinda, and M. Haelterman, Opt. Lett. 22, 1686 (1997). [CrossRef]
  8. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveira-Neto, Phys. Rev. A 43, 6162 (1991). [CrossRef] [PubMed]
  9. S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003). [CrossRef]
  10. J. D. Harvey, R. Leonhardt, S. Coen, G. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003). [CrossRef] [PubMed]
  11. S. Coen and M. Haelterman, Phys. Rev. Lett. 79, 4139 (1997). [CrossRef]
  12. L. A. Lugiato and R. Lefever, Phys. Rev. Lett. 58, 2209 (1987). [CrossRef] [PubMed]
  13. K. Hansen, Opt. Express 11, 1503 (2003). [CrossRef] [PubMed]
  14. G. Kozyreff, S. J. Chapman, and M. Tlidi, Phys. Rev. E 68, 015201(R) (2003). [CrossRef]
  15. G. Kozyreff and M. Tlidi, Phys. Rev. E 69, 066202 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited