OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Anthony J Campillo
  • Vol. 32, Iss. 7 — Apr. 1, 2007
  • pp: 760–762

Wavelength-selective core-to-jacket coupling in optical fiber

Gary A. Miller, Charles G. Askins, and Thierry Taunay  »View Author Affiliations


Optics Letters, Vol. 32, Issue 7, pp. 760-762 (2007)
http://dx.doi.org/10.1364/OL.32.000760


View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mode coupling between the fundamental core mode of an as-drawn optical fiber operating far from cutoff and higher-order modes in the plastic jacketing has been observed. In one fiber, the transmission spectrum of the core exhibited five distinct minima between 1200 and 1900 nm . By approximating the fiber jacket as an asymmetric slab waveguide of infinite lateral extent, the wavelengths of these transmission features were successfully predicted using coupled-mode theory. Since conditions at the jacket surface influence the transmission spectrum, this coupling effect potentially enables new applications for environmental sensing.

© 2007 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 29, 2006
Manuscript Accepted: January 3, 2007
Published: March 5, 2007

Citation
Gary A. Miller, Charles G. Askins, and Thierry Taunay, "Wavelength-selective core-to-jacket coupling in optical fiber," Opt. Lett. 32, 760-762 (2007)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-7-760


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996). [CrossRef]
  2. D. Flannery, S. W. James, R. P. Tatam, G. J. Ashwell, D. W. Allen, and X. Li, Proc. SPIE 3105, 144 (1997). [CrossRef]
  3. B. Culshaw, F. Muhammad, G. Stewart, S. Murray, D. Pinchbeck, J. Norris, S. Cassidy, M. Wilkinson, D. Williams, I. Crisp, R. Van Ewyk, and A. McGhee, Electron. Lett. 28, 2232 (1992). [CrossRef]
  4. A. J. C. Tubb, F. P. Payne, R. Millington, and C. R. Lowe, Electron. Lett. 31, 1770 (1995). [CrossRef]
  5. A. Cusano, P. Pilla, L. Contessa, A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and G. Guerra, Appl. Phys. Lett. 87, 234105 (2005). [CrossRef]
  6. L. Dong, G. E. Berkey, P. Chen, and D. L. Weidman, J. Lightwave Technol. 18, 7 (2000). [CrossRef]
  7. E. Snitzer, Advances in Quantum Electronics (Columbia U. Press, 1961).
  8. A. L. Jones, J. Opt. Soc. Am. 55, 261 (1965). [CrossRef]
  9. H. F. Taylor, Opt. Commun. 8, 421 (1973). [CrossRef]
  10. D. Gloge, Appl. Opt. 10, 2252 (1971). [CrossRef] [PubMed]
  11. H. Kogelnik and V. Ramaswamy, Appl. Opt. 13, 1857 (1973). [CrossRef]
  12. I. D. Nikolov and C. D. Ivanov, Appl. Opt. 39, 2067 (2000). [CrossRef]
  13. O. S. Wolfbeis, Anal. Chem. 78, 3859 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited