OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Anthony J. Campillo
  • Vol. 32, Iss. 8 — Apr. 15, 2007
  • pp: 973–975

Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis

Kin Hung Fung and C. T. Chan  »View Author Affiliations

Optics Letters, Vol. 32, Issue 8, pp. 973-975 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (401 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate an efficient eigendecomposition method for analyzing the guided modes in metal nanoparticle chains. The proposed method has the advantage of simultaneously showing the dispersion relation and the mode quality. It can also separate the material properties from the geometrical properties. Its efficiency therefore does not depend on the complexity of the material polarizability. We used the method to analyze the guided modes of a single and a pair of metal nanoparticle chains. The rigorous dynamic dipole polarizability typically gives a redshift compared with the results obtained from the broadly used quasi-static dipole polarizability with radiation correction.

© 2007 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

Original Manuscript: November 16, 2006
Revised Manuscript: January 18, 2007
Manuscript Accepted: January 21, 2007
Published: March 19, 2007

Kin Hung Fung and C. T. Chan, "Plasmonic modes in periodic metal nanoparticle chains: a direct dynamic eigenmode analysis," Opt. Lett. 32, 973-975 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Opt. Lett. 23, 1331 (1998). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, R16356 (2000). [CrossRef]
  3. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, and H. A. Atwater, Adv. Mater. (Weinheim, Ger.) 13, 1501 (2001). [CrossRef]
  4. S. A. Maier and H. A. Atwater, J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  5. See, e.g., C. Girard, Rep. Prog. Phys. 68, 1883 (2005), and references cited therein. [CrossRef]
  6. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. G. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003). [CrossRef] [PubMed]
  7. S. A. Maier, P. E. Barclay, T. J. Johnson, M. D. Friedman, and O. Painter, Appl. Phys. Lett. 84, 3990 (2004). [CrossRef]
  8. R. Quidant, C. Girard, J. C. Weeber, and A. Dereux, Phys. Rev. B 69, 085407 (2004). [CrossRef]
  9. R. Quidant, J. C. Weeber, A. Dereux, D. Peyrade, Y. Chen, and C. Girard, Europhys. Lett. 57, 191 (2002). [CrossRef]
  10. D. S. Citrin, Opt. Lett. 31, 98 (2006). [CrossRef] [PubMed]
  11. M. Sukharev and T. Seideman, Nano Lett. 6, 715 (2006). [CrossRef] [PubMed]
  12. S. Zou and G. C. Schatz, Phys. Rev. B 74, 125111 (2006). [CrossRef]
  13. W. H. Weber and G. W. Ford, Phys. Rev. B 70, 125429 (2004). [CrossRef]
  14. A. F. Koenderink and A. Polman, Phys. Rev. B 74, 033402 (2006). [CrossRef]
  15. S. Y. Park and D. Stroud, Phys. Rev. B 69, 125418 (2004). [CrossRef]
  16. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, Phys. Rev. E 72, 066606 (2005). [CrossRef]
  17. D. S. Citrin, Nano Lett. 4, 1561 (2004). [CrossRef]
  18. R. A. Shore and A. D. Yaghjian, Electron. Lett. 41, 578 (2005). [CrossRef]
  19. A comparison with the generalized Mie theory can show this.
  20. V. A. Markel and V. M. Shalaev, in Computational Studies of New Materials, D.A.Jelski and T.F.George, eds. (World Scientific, 1999), pp. 210-243.
  21. L. Zhou and S. T. Chui, Phys. Rev. B 74, 035419 (2006). [CrossRef]
  22. C. E. Dungey and C. F. Bohren, J. Opt. Soc. Am. A 8, 81 (1991). [CrossRef]
  23. V. A. Markel, J. Phys. B 38, L115 (2005). [CrossRef]
  24. See, e.g., C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  25. The eigenvectors, forming a complete set, are "normalized" in the sense that ⟨p̂kσ∣p̂k′σ′⟩=δσ,σ′∑n=−∞∞δ(k−k′+2nπ/a).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited