OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 1 — Jan. 1, 2008
  • pp: 40–42

Application of Huygens–Fresnel diffraction principle for high aspect ratio SU-8 micro-/nanotip array

Seok Woo Lee and Seung S. Lee  »View Author Affiliations

Optics Letters, Vol. 33, Issue 1, pp. 40-42 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (432 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A high-aspect-ratio ( 30 ) SU-8 micro-/nanotip array whose shape is defined by diffraction was fabricated by a single UV photolithography procedure and its exposed dose control. The fabrication result of the tip agrees well with the Rayleigh–Sommerfeld solution of the Huygens–Fresnel principle at wide observation distances. In a near field below distance 2 μ m (only several times of wavelength), necking points also agree with the solution, although it is assumed that the distance is much larger than wavelength. It can be also applied to control the shape of the tip and to determine the critical dose D c of SU-8 and other photocurable polymers.

© 2008 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(110.5220) Imaging systems : Photolithography
(160.5470) Materials : Polymers
(160.6000) Materials : Semiconductor materials

ToC Category:

Original Manuscript: October 3, 2007
Revised Manuscript: November 5, 2007
Manuscript Accepted: November 12, 2007
Published: December 18, 2007

Virtual Issues
Vol. 3, Iss. 2 Virtual Journal for Biomedical Optics

Seok Woo Lee and Seung S. Lee, "Application of Huygens-Fresnel diffraction principle for high aspect ratio SU-8 micro-/nanotip array," Opt. Lett. 33, 40-42 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. A. D. Campo and C. Greiner, J. Micromech. Microeng. 17, R81 (2007). [CrossRef]
  2. M. Han, W. Lee, S.-K. Lee, and S. S. Lee, Sens. Actuators, A 111, 14 (2004). [CrossRef]
  3. S. W. Lee, D. S. Kim, S. S. Lee, and T. H. Kwon, J. Micromech. Microeng. 16, 1067 (2006). [CrossRef]
  4. B.-Y. Shew, H.-C. Li, C.-L. Pan, and C.-H. Ko, J. Phys. D 38, 1097 (2005). [CrossRef]
  5. G. Genolet, M. Despont, P. Vettiger, U. Staufer, W. Noell, N. F. DeRooij, T. Cueni, M.-P. Bernal, and F. Marquis-Weible, Rev. Sci. Instrum. 72, 3877 (2001). [CrossRef]
  6. J.-H. Park, M. G. Allen, and M. R. Prausnitz, J. Controlled Release 104, 51 (2005). [CrossRef]
  7. K. Kim, D. S. Park, H. M. Lu, W. Che, K. Kim, J.-B. Lee, and C. H. Ahn, J. Micromech. Microeng. 14, 579 (2004).
  8. H. Huang, W. Yang, T. Wang, T. Chuang, and C. Fu, J. Micromech. Microeng. 17, 291 (2007). [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company, 2005).
  10. M. J. Madou, Fundamentals of Microfabrication, 2nd ed., (CRC Press, 2002).
  11. M. Gaudet, J.-C. Camart, L. Buchaillot, and S. Arscott, Appl. Phys. Lett. 88, 024107 (2006). [CrossRef]
  12. E. Hecht, Optics, 4th ed., (Addison-Wesley, 2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited