OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 1 — Jan. 1, 2008
  • pp: 46–48

Slow light with cavity electromagnetically induced transparency

Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu  »View Author Affiliations


Optics Letters, Vol. 33, Issue 1, pp. 46-48 (2008)
http://dx.doi.org/10.1364/OL.33.000046


View Full Text Article

Enhanced HTML    Acrobat PDF (225 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an experimental observation of slow light propagation in cold Rb atoms exhibiting cavity electromagnetically induced transparency (EIT). The steep slope of the atomic dispersion manifested by EIT reduces the light group velocity. The cavity filtering and feedback further contribute to the slowdown and delay of the light pulse propagation. A combination of the cavity and the EIT atomic system significantly improves the performance of the slow light propagation. A propagation time delay of 200 ns was observed in the cavity and Rb EIT system, which is 70 times greater than the time delay calculated for the light pulse propagation through the same Rb EIT system without the cavity.

© 2008 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects
(270.4180) Quantum optics : Multiphoton processes
(270.5530) Quantum optics : Pulse propagation and temporal solitons

ToC Category:
Quantum Optics

History
Original Manuscript: September 6, 2007
Manuscript Accepted: October 17, 2007
Published: December 19, 2007

Citation
Jiepeng Zhang, Gessler Hernandez, and Yifu Zhu, "Slow light with cavity electromagnetically induced transparency," Opt. Lett. 33, 46-48 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-1-46


Sort:  Year  |  Journal  |  Reset  

References

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1997). [CrossRef]
  2. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, Phys. Rev. Lett. 82, 5229 (1999). [CrossRef]
  3. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002). [CrossRef] [PubMed]
  4. Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Phys. Rev. Lett. 89, 233001 (2002). [CrossRef] [PubMed]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003). [CrossRef] [PubMed]
  6. G. S. Agarwal and T. N. Dey, Phys. Rev. Lett. 92, 203901 (2004). [CrossRef] [PubMed]
  7. V. S. C. Rao, S. D. Gupta, and G. S. Agarwal, Opt. Lett. 29, 307 (2004). [CrossRef]
  8. Z. J. Deng, D. K. Qing, P. Hemmer, C. H. R. Ooi, M. S. Zubairy, and M. O. Scully, Phys. Rev. Lett. 96, 023602 (2006). [CrossRef] [PubMed]
  9. M. D. Stenner, D. J. Gauthier, and M. A. Neifeld, Phys. Rev. Lett. 94, 053902 (2005). [CrossRef] [PubMed]
  10. P. C. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. L. Wang, S. W. Chang, and S. L. Chuang, Opt. Lett. 29, 2291 (2004). [CrossRef] [PubMed]
  11. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  12. J. Khurgin, Opt. Lett. 30, 513 (2005). [CrossRef] [PubMed]
  13. H. Su and S. L. Chuang, Opt. Lett. 31, 271 (2006). [CrossRef] [PubMed]
  14. M. F. Yanik and S. H. Fan, Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  15. M. F. Yanik and S. H. Fan, Phys. Rev. A 71, 013803 (2005). [CrossRef]
  16. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, Opt. Lett. 23, 295 (1998). [CrossRef]
  17. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, Opt. Lett. 25, 1732 (2000). [CrossRef]
  18. In our experiment, the cavity can stay around the resonance (≥90% of the peak transmission) for at least 10s before it slowly drifts away, which is long enough for recording a sufficient number of the experimental measurements. Furthermore, the cavity dark state is insensitive to the cavity drift [G. Hernandez, J. Zhang, and Y. Zhu, Phys. Rev. A 76, 053814 (2007)]. [CrossRef]
  19. G. S. Agarwal, Phys. Rev. Lett. 53, 1732 (1984). [CrossRef]
  20. Y. Zhu, D. J. Gauthier, S. E. Morin, Q. Wu, H. J. Carmichael, and T. W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990). [CrossRef] [PubMed]
  21. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. H. Fan, and M. Lipson, Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited