OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 10 — May. 15, 2008
  • pp: 1074–1076

Exact description of a cylindrically symmetrical complex-argument Laguerre–Gauss beam

Shaohui Yan and Baoli Yao  »View Author Affiliations

Optics Letters, Vol. 33, Issue 10, pp. 1074-1076 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (141 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the perturbative series representation of a complex-source-point spherical wave an expression for cylindrically symmetrical complex-argument Laguerre–Gauss beams of radial order n is derived. This description acquires the accuracy up to any order of diffraction angle, and its first three corrected terms are in accordance with those given by Seshadri [Opt. Lett. 27, 1872 (2002)] based on the virtual source method. Numerical results show that on the beam axis the number of orders of nonvanishing nonparaxial corrections is equal to n. Meanwhile a higher radial mode number n leads to a smaller convergent domain of radius.

© 2008 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Physical Optics

Original Manuscript: January 3, 2008
Revised Manuscript: March 27, 2008
Manuscript Accepted: March 28, 2008
Published: May 9, 2008

Shaohui Yan and Baoli Yao, "Exact description of a cylindrically symmetrical complex-argument Laguerre-Gauss beam," Opt. Lett. 33, 1074-1076 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Q. Zhan, Opt. Express 12, 3377 (2004). [CrossRef] [PubMed]
  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  3. Y. I. Salamin and C. H. Keitel, Phys. Rev. Lett. 88, 095005 (2002). [CrossRef] [PubMed]
  4. S. Yan and B. Yao, Phys. Rev. A 76, 053836 (2007). [CrossRef]
  5. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 32, 1839 (2007). [CrossRef] [PubMed]
  6. N. Hayazawa, Y. Saito, and S. Kawata, Appl. Phys. Lett. 85, 6239 (2004). [CrossRef]
  7. M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A 11, 1365 (1975). [CrossRef]
  8. S. R. Seshadri, Opt. Lett. 27, 1872 (2002). [CrossRef]
  9. S. Yan and B. Yao, Opt. Lett. 32, 3367 (2007). [CrossRef] [PubMed]
  10. M. Couture and P. Belanger, Phys. Rev. A 24, 355 (1981). [CrossRef]
  11. Z. Wang and D. Guo, Special Functions (World Scientific, 1996), formula 6.14.18.
  12. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products (Academic, 1996), p. 853, formula 7.421.4.
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995), pp. 287-290.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited