OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 11 — Jun. 1, 2008
  • pp: 1168–1170

Hyperentanglement source by intersubband two-photon emission from semiconductor quantum wells

Alex Hayat, Pavel Ginzburg, David Neiman, Serge Rosenblum, and Meir Orenstein  »View Author Affiliations

Optics Letters, Vol. 33, Issue 11, pp. 1168-1170 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (167 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose an efficient hyperentanglement source emitting photon pairs entangled in both energy and polarization. The compact electrically driven room-temperature source, based on intersubband two-photon emission from semiconductor quantum wells (QWs) exhibits pair generation rates several orders of magnitude higher than alternative conventional schemes. A theoretical formalism is derived for the calculation of photon pair generation spectra and rates. The results are presented for superlattice structures similar to quantum cascade lasers of GaAs AlGaAs QWs emitting in the mid-IR and far-IR and for InN AlN QW structures suitable for telecommunication wavelengths.

© 2008 Optical Society of America

OCIS Codes
(270.4180) Quantum optics : Multiphoton processes
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

Original Manuscript: December 6, 2007
Revised Manuscript: April 15, 2008
Manuscript Accepted: April 17, 2008
Published: May 22, 2008

Alex Hayat, Pavel Ginzburg, David Neiman, Serge Rosenblum, and Meir Orenstein, "Hyperentanglement source by intersubband two-photon emission from semiconductor quantum wells," Opt. Lett. 33, 1168-1170 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Kumar, P. Kwiat, A. Migdall, S. Nam, J. Vuckovic, and F. N. C. Wong, Quantum Inf. Process. 3, 215 (2004). [CrossRef]
  2. J. S. Bell, Physics (Long Island City, N.Y.) 1, 195 (1964).
  3. T. B. Pittman and J. D. Franson, Phys. Rev. Lett. 90, 240401 (2003). [CrossRef] [PubMed]
  4. T.-C. Wei, J. T. Barreiro, and P. G. Kwiat, Phys. Rev. A 75, 060305(R) (2007). [CrossRef]
  5. S. P. Walborn, S. Pádua, and C. H. Monken, Phys. Rev. A 68, 042313 (2003). [CrossRef]
  6. N. K. Langford, T. J. Weinhold, R. Prevedel, A. Gilchrist, J. L. O'Brien, G. J. Pryde, and A. G. White, Phys. Rev. Lett. 95, 210504 (2005). [CrossRef] [PubMed]
  7. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature 429, 161 (2004). [CrossRef] [PubMed]
  8. A. B. U'Ren, R. K. Erdmann, M. de la Cruz-Gutierrez, and I. A. Walmsley, Phys. Rev. Lett. 97, 223602 (2006). [CrossRef] [PubMed]
  9. L. Lanco, S. Ducci, J. P. Likforman, X. Marcadet, J. A. W. van Houwelingen, H. Zbinden, G. Leo, and V. Berger, Phys. Rev. Lett. 97, 173901 (2006). [CrossRef] [PubMed]
  10. G. Klemens, C.-H. Chen, and Y. Fainman, Opt. Express 13, 9388 (2005). [CrossRef] [PubMed]
  11. K. Banaszek, A. B. U'Ren, and I. A. Walmsley, Opt. Lett. 26, 1367 (2001). [CrossRef]
  12. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, Phys. Rev. Lett. 94, 053601 (2005). [CrossRef] [PubMed]
  13. J. Fan and A. Migdall, Opt. Express 15, 2915 (2007). [CrossRef] [PubMed]
  14. C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield, and S. W. Nam, Opt. Express 15, 1322 (2007). [CrossRef] [PubMed]
  15. J. Fan, A. Migdall, and L. J. Wang, Opt. Lett. 30, 3368 (2005). [CrossRef]
  16. N. Akopian, N. H. Linder, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Geradot, and P. M. Petroff, Phys. Rev. Lett. 96, 130501 (2006). [CrossRef] [PubMed]
  17. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, Nature 439, 179 (2006). [CrossRef] [PubMed]
  18. A. Hayat, P. Ginzburg, and M. Orenstein, Phys. Rev. B 76, 035339 (2007). [CrossRef]
  19. A. Hayat, P. Ginzburg, and M. Orenstein, Nat. Photonics 2, 238 (2008). [CrossRef]
  20. E. Rosencher, J. Appl. Phys. 73, 1909 (1993). [CrossRef]
  21. H. C. Liu, M. Buchanan, and Z. R. Wasilewski, Appl. Phys. Lett. 72, 1682 (1998). [CrossRef]
  22. J. D. Franson, Phys. Rev. Lett. 62, 2205 (1989). [CrossRef] [PubMed]
  23. N. G. Basov, A. Z. Grasiuk, V. F. Efimov, I. G. Zubarev, V. A. Katulin, and Ju. M. Popov, J. Phys. Soc. Jpn. 21, 277 (1966).
  24. C. C. Lee and H. Y. Fan, Phys. Rev. B 9, 3502 (1974). [CrossRef]
  25. E. West, Appl. Phys. Lett. 46, 1156 (1985). [CrossRef]
  26. S. L. Chuang, Physics of Optoelectronic Devices (Wiley-Interscience, 1995).
  27. S. Pascarelli, F. Boscherini, C. Lamberti, and S. Mobilio, Phys. Rev. B 56, 1936 (1997). [CrossRef]
  28. M. E. Levinshtein, S. L. Rumyantsev, and M. Shur, eds., Handbook Series on Semiconductor Parameters (World Scientific, 1996). [CrossRef]
  29. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553 (1994). [CrossRef] [PubMed]
  30. D. A. Carder, L. R. Wilson, R. P. Green, J. W. Cockburn, M. Hopkinson, M. J. Steer, R. Airey, and G. Hill, Appl. Phys. Lett. 82, 3409 (2003). [CrossRef]
  31. M. Pelton, P. Marsden, D. Ljunggren, M. Tengner, A. Karlsson, A. Fragemann, C. Canalias, and F. Laurell, Opt. Express 12, 3573 (2004). [CrossRef] [PubMed]
  32. B. Monemar and G. Pozina, Prog. Quantum Electron. 24, 239 (2000). [CrossRef]
  33. O. Kuzucu and F. N. C. Wong, Phys. Rev. A 77, 032314 (2008). [CrossRef]
  34. E. Berkowicz, D. Gershoni, G. Bahir, A. C. Abare, S. P. DenBaars, and L. A. Coldren, Phys. Status Solidi B 216, 291 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited