OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 11 — Jun. 1, 2008
  • pp: 1210–1212

Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process

Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang  »View Author Affiliations


Optics Letters, Vol. 33, Issue 11, pp. 1210-1212 (2008)
http://dx.doi.org/10.1364/OL.33.001210


View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The first demonstration, to our knowledge, of the creation of ultrabroadband superluminescent light-emitting diodes using multiple quantum-dot layer structure by rapid thermal-annealing process is reported. The device exhibits a 3 dB emission bandwidth of 146 nm centered at 984 nm with cw output power as high as 15 mW at room temperature corresponding to an extremely small coherence length of 6.6 μ m .

© 2008 Optical Society of America

OCIS Codes
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.3670) Optical devices : Light-emitting diodes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.0250) Optoelectronics : Optoelectronics
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Optoelectronics

History
Original Manuscript: March 14, 2008
Revised Manuscript: April 21, 2008
Manuscript Accepted: April 22, 2008
Published: May 27, 2008

Citation
Z. Y. Zhang, R. A. Hogg, B. Xu, P. Jin, and Z. G. Wang, "Realization of extremely broadband quantum-dot superluminescent light-emitting diodes by rapid thermal-annealing process," Opt. Lett. 33, 1210-1212 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-11-1210


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Lin, B. L. Lee, and P. C. Lin, IEEE Photonics Technol. Lett. 8, 1456 (1996). [CrossRef]
  2. A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsky, M. V. Shramenko, and S. D. Yakubovich, Electron. Lett. 31, 314 (1995). [CrossRef]
  3. Z. Y. Zhang, Z. G. Wang, B. Xu, P. Jin, Z. Z. Sun, and F. Q. Liu, IEEE Photonics Technol. Lett. 16, 27 (2004). [CrossRef]
  4. H. S. Djie, C. E. Dimas, D. N. Wang, B. S. Ooi, J. C. M. Hwang, G. T. Dang, and W. H. Chang, IEEE Sens. J. 7, 251 (2007). [CrossRef]
  5. L. H. Li, M. Rossetti, A. Fiore, L. Occhi, and C. Velez, Electron. Lett. 41, 41 (2005). [CrossRef]
  6. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, IEEE Photonics Technol. Lett. 19, 501 (2007). [CrossRef]
  7. C. K. Chia, S. J. Chua, J. R. Dong, and S. L. Teo, Appl. Phys. Lett. 90, 061101 (2007). [CrossRef]
  8. F. Heinrichsdor, M. Grundmann, O. Stier, A. Krost, and D. Bimberg, J. Cryst. Growth 195, 540 (1998). [CrossRef]
  9. S. Fafard and C. Ni. Allen, Appl. Phys. Lett. 75, 2374 (1999). [CrossRef]
  10. T. Yang, J. Tatebayashi, K. Aoki, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 90, 111912 (2007). [CrossRef]
  11. B. Ilahi, L. Sfaxi, G. Bremond, M. Hjiri, and H. Maaref, Phys. Status Solidi 2, 1325 (2005). [CrossRef]
  12. Z. Y. Zhang, Y. Y. Tsui, R. Fedosejevs, and Z. G. Wang, Mater. Res. Soc. Symp. Proc. 883, FF5.1.1/V5.1.1 (2005).
  13. Z. Y. Zhang, R. A. Hogg, P. Jin, T. L. Choi, B. Xu, and Z. G. Wang, IEEE Photonics Technol. Lett. 20, 782 (2008). [CrossRef]
  14. L. Harris, A. D. Ashmore, D. J. Mowbray, and M. S. Skolnick, Appl. Phys. Lett. 75, 3512 (1999). [CrossRef]
  15. H. Y. Liu, X. D. Wang, Y. Q. Wei, B. Xu, D. Ding, and Z. G. Wang, J. Cryst. Growth 220, 216 (2000). [CrossRef]
  16. C. K. Chia, J. R. Dong, S. J. Chua, and S. Tripathy, J. Cryst. Growth 288, 57 (2006). [CrossRef]
  17. T. P. Lee, C. A. Burrus, Jr., and B. I. Miller, IEEE J. Quantum Electron. QE-9, 820 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited