OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 11 — Jun. 1, 2008
  • pp: 1261–1263

Low threshold gain metal coated laser nanoresonators

Amit Mizrahi, Vitaliy Lomakin, Boris A. Slutsky, Maziar P. Nezhad, Liang Feng, and Yeshaiahu Fainman  »View Author Affiliations

Optics Letters, Vol. 33, Issue 11, pp. 1261-1263 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a low refractive index layer between the metal and the gain medium in metal-coated laser resonators and demonstrate that it can significantly reduce the dissipation losses. Analysis of a gain medium waveguide shows that for a given waveguide radius, the low index layer has an optimal thickness for which the lasing threshold gain is minimal. The waveguide analysis is used for the design of a novel three-dimensional cylindrical resonator that is smaller than the vacuum wavelength in all three dimensions and exhibits a low enough threshold gain to lase at room temperature.

© 2008 Optical Society of America

OCIS Codes
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Lasers and Laser Optics

Original Manuscript: March 17, 2008
Manuscript Accepted: April 20, 2008
Published: May 30, 2008

Amit Mizrahi, Vitaliy Lomakin, Boris A. Slutsky, Maziar P. Nezhad, Liang Feng, and Yeshaiahu Fainman, "Low threshold gain metal coated laser nanoresonators," Opt. Lett. 33, 1261-1263 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, Science 284, 1819 (1999). [CrossRef] [PubMed]
  2. C.-K. Lin, D. P. Bour, J. Zhu, W. H. Perez, M. H. Leary, A. Tandon, S. W. Corzine, and M. R. T. Tan, IEEE J. Sel. Top. Quantum Electron. 9, 1415 (2003). [CrossRef]
  3. A. V. Maslov and C. Z. Ning, Proc. SPIE 6468, 64680I (2007). [CrossRef]
  4. V. Krishnamurthy and B. Klein, IEEE J. Quantum Electron. 44, 67 (2008). [CrossRef]
  5. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, Nat. Photonics 1, 589 (2007). [CrossRef]
  6. M. P. Nezhad, K. Tetz, and Y. Fainman, Opt. Express 12, 4072 (2004). [CrossRef] [PubMed]
  7. P. Yeh, A. Yariv, and E. Marom, J. Opt. Soc. Am. 68, 1196 (1978). [CrossRef]
  8. A. Mizrahi and L. Schächter, Opt. Express 12, 3156 (2004). [CrossRef] [PubMed]
  9. M. Miyagi, A. Hongo, and S. Kawakami, IEEE J. Quantum Electron. 19, 136 (1983). [CrossRef]
  10. E. I. Smotrova and A. I. Nosich, Opt. Quantum Electron. 36, 213 (2004). [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  12. L. Novotny and C. Hafner, Phys. Rev. E 50, 4094 (1994). [CrossRef]
  13. E. O. Goebel, G. Luz, and E. Schlosser, IEEE J. Quantum Electron. 15, 697 (1979). [CrossRef]
  14. M. Körbl, A. Gröning, H. Schweizer, and J. L. Gentner, J. Appl. Phys. 92, 2942 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited