Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Hybridization of electromagnetic numerical methods through the G-matrix algorithm

Not Accessible

Your library or personal account may give you access

Abstract

For the sake of numerical performance, we hybridize two common approaches often used in electromagnetic computations, namely the finite-element method and the aperiodic Fourier modal method. To that end, we propose an extension of the classical S-matrix formalism to numerical situations, which requires handling different mathematical representations of the electromagnetic fields. As shown with a three-dimensional example, the proposed G-matrix formalism is stable and allows for an enhanced performance in terms of numerical accuracy and efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Properties of high-numerical-aperture Mueller-matrix polarimeters

P. R. T. Munro and P. Török
Opt. Lett. 33(21) 2428-2430 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.