OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 14 — Jul. 15, 2008
  • pp: 1590–1592

Hybridization of electromagnetic numerical methods through the G-matrix algorithm

J. P. Hugonin, M. Besbes, and P. Lalanne  »View Author Affiliations

Optics Letters, Vol. 33, Issue 14, pp. 1590-1592 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For the sake of numerical performance, we hybridize two common approaches often used in electromagnetic computations, namely the finite-element method and the aperiodic Fourier modal method. To that end, we propose an extension of the classical S-matrix formalism to numerical situations, which requires handling different mathematical representations of the electromagnetic fields. As shown with a three-dimensional example, the proposed G-matrix formalism is stable and allows for an enhanced performance in terms of numerical accuracy and efficiency.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.1960) Diffraction and gratings : Diffraction theory
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Diffraction and Gratings

Original Manuscript: March 12, 2008
Revised Manuscript: June 11, 2008
Manuscript Accepted: June 13, 2008
Published: July 11, 2008

J. P. Hugonin, M. Besbes, and P. Lalanne, "Hybridization of electromagnetic numerical methods through the G-matrix algorithm," Opt. Lett. 33, 1590-1592 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 2002).
  2. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995). [CrossRef]
  3. J. P. Hugonin and P. Lalanne, J. Opt. Soc. Am. A 22, 1844 (2005). [CrossRef]
  4. G. Lecamp, J. P. Hugonin, and P. Lalanne, Opt. Express 15, 11042 (2007). [CrossRef] [PubMed]
  5. E. Popov, M. Nevière, B. Gralak, and G. Tayeb, J. Opt. Soc. Am. A 19, 33 (2002). [CrossRef]
  6. H. Kim, I. M. Lee, and B. Lee, J. Opt. Soc. Am. A 24, 2313 (2007). [CrossRef]
  7. K. Dossou, M. A. Byrne, and L. C. Botten, J. Comput. Phys. 219, 120 (2006). [CrossRef]
  8. T. Delort and D. Maystre, J. Opt. Soc. Am. A 10, 2592 (1993). [CrossRef]
  9. P. Lalanne and J. P. Hugonin, J. Opt. Soc. Am. A 17, 1033 (2000). [CrossRef]
  10. With the MATLAB software, we have implemented several methods using LU and QR factorizations for the Gauss-Jordan elimination; see W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing (Cambridge U. Press, 1989), Chap. 3.
  11. Q. Cao, P. Lalanne, and J. P. Hugonin, J. Opt. Soc. Am. A 19, 335 (2002). [CrossRef]
  12. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, J. Eur. Opt. Soc. Rapid Publ. 2, 07022 (2007). [CrossRef]
  13. We note that accurately calculating the W1 modal field on the hole discontinuities is crucial for estimating the inevitable extrinsic loss in the slow-light regime, see L. C. Andreani and D. Gerace, Phys. Status Solidi B 244, 3528 (2007). [CrossRef]
  14. C. Sauvan, P. Lalanne, J. C. Rodier, J. P. Hugonin, and A. Talneau, IEEE Photonics Technol. Lett. 15, 1243 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited