OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 15 — Aug. 1, 2008
  • pp: 1690–1692

Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers

Peter T. Rakich, Yoel Fink, and Marin Soljačić  »View Author Affiliations

Optics Letters, Vol. 33, Issue 15, pp. 1690-1692 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (642 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Spontaneous cascaded Raman amplification is demonstrated as a practical and efficient means of power transfer from telecommunications wavelengths to mid-IR wavelength bands through use of conventional silica fibers and amplifiers. We show that silica fibers possessing normal dispersion over all near-IR and mid-IR wavelengths can facilitate 37% and 16% efficient Raman power conversion from 1.53 μ m to 2.15 and 2.41 μ m wavelength bands, respectively, using nanosecond pulses from an all-fiber laser source. In contrast to supercontinuum-based techniques for long-wavelength generation, the high levels of Raman gain generated at these wavelength bands could produce useful optical amplification necessary for the development of numerous mid-IR laser sources.

© 2008 Optical Society of America

OCIS Codes
(140.3550) Lasers and laser optics : Lasers, Raman
(140.4480) Lasers and laser optics : Optical amplifiers
(190.5650) Nonlinear optics : Raman effect
(190.5890) Nonlinear optics : Scattering, stimulated
(140.3538) Lasers and laser optics : Lasers, pulsed

ToC Category:
Nonlinear Optics

Original Manuscript: April 2, 2008
Revised Manuscript: June 9, 2008
Manuscript Accepted: June 10, 2008
Published: July 24, 2008

Peter T. Rakich, Yoel Fink, and Marin Soljačić, "Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers," Opt. Lett. 33, 1690-1692 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, J. Optoelectron. Adv. Mater. 3, 627 (2001).
  2. P. Werlea, F. Slemra, K. Maurera, R. Kormannb, R. Mucke, and B. Janker, Appl. Phys. B 67, 307 (1998). [CrossRef]
  3. L. Esterowitz, R. Allen, and I. Aggarwal, Electron. Lett. 24, 1104 (1988). [CrossRef]
  4. C. A. Xia, M. Kumar, O. R. Kulkarni, M. N. Islam, F. L. Terry, and M. J. Freeman, Opt. Lett. 31, 2553 (2006). [CrossRef] [PubMed]
  5. R. H. Stolen, C. Lee, and R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984). [CrossRef]
  6. C. Lin, L. G. Cohen, R. H. Stolen, G. W. Tasker, and W. G. French, Opt. Commun. 20, 426 (1977). [CrossRef]
  7. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997). [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989), Chap. 8.
  9. H. Xie, Z. C. Wang, and J. X. Fang, Phys. Status Solidi A 96, 483 (1986). [CrossRef]
  10. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  11. O. P. Kulkarni, C. Xia, D. J. Lee, M. Kumar, A. Kuditcher, M. N. Islam, F. L. Terry, M. J. Freeman, B. G. Aitken, S. C. Currie, J. E. McCarthy, M. L. Powley, and D. A. Nolan, Opt. Express 14, 7924 (2006). [CrossRef] [PubMed]
  12. R. H. Stolen, C. Lee, and R. K. Jain, J. Opt. Soc. Am. B 1, 652 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited