OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 16 — Aug. 15, 2008
  • pp: 1833–1835

Ten gigabits per second 16-level quadrature amplitude modulated millimeter-wave carrier generation using dual-drive Mach–Zehnder modulators incorporated photonic- vector modulator

Rakesh Sambaraju, Valentín Polo, Juan Luis Corral, and Javier Martí  »View Author Affiliations


Optics Letters, Vol. 33, Issue 16, pp. 1833-1835 (2008)
http://dx.doi.org/10.1364/OL.33.001833


View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel photonic-vector modulator architecture for the generation of 16 quadrature amplitude modulation (16 QAM) millimeter-wave carriers using dual-drive Mach–Zehnder modulators is proposed. Experimental generation of 5 Gbits s 4 amplitude shift-keying (4 ASK) and 10 Gbits s 16 QAM modulated 42 GHz carriers is reported. The multilevel modulated millimeter-wave signals are demodulated using an electrical receiver and its error-vector magnitude (EVM) estimated from the measurements, obtaining EVMs of 21.04 and 18.33 dB for 4 ASK and 16 QAM modulation formats, respectively.

© 2008 Optical Society of America

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: March 17, 2008
Revised Manuscript: July 5, 2008
Manuscript Accepted: July 7, 2008
Published: August 7, 2008

Citation
Rakesh Sambaraju, Valentín Polo, Juan Luis Corral, and Javier Martí, "Ten gigabits per second 16-level quadrature amplitude modulated millimeter-wave carrier generation using dual-drive Mach–Zehnder modulators incorporated photonic-vector modulator," Opt. Lett. 33, 1833-1835 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-16-1833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Hirata, M. Harada, and T. Nagatsuma, J. Lightwave Technol. 21, 2145 (2003). [CrossRef]
  2. J. Yu, Z. Jia, L. Yi, Y. Su, G. Chang, and T. Wang, IEEE Photon. Technol. Lett. 18, 265 (2006). [CrossRef]
  3. A. Wiberg, P. Perez-Milan, M. V. Anders, P. A. Anderkson, and P. O. Hedekvist, IEEE Photon. Technol. Lett. 17, 1938 (2005). [CrossRef]
  4. A. J. Seeds and J. K. Williams, J. Lightwave Technol. 24, 4628 (2006). [CrossRef]
  5. J. Capmany and D. Novak, Nat. Photonics 1, 319 (2007). [CrossRef]
  6. W. D. Jemison, A. J. Kreuzberger, and E. Funk, IEEE Microw. Wirel. Compon. Lett. 12, 125 (2002). [CrossRef]
  7. P. Candelas, J. M. Fuster, J. Marti, and J. C. Roig, J. Lightwave Technol. 21, 496 (2003). [CrossRef]
  8. R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, J. Lightwave Technol. 25, 3350 (2007). [CrossRef]
  9. R. Sambaraju, M. A. Piqueras, V. Polo, J. L. Corral, and J. Marti, in Proceedings of the European Conference on Optical Communications 2007 (VDE Verlag, 2007), paper Tu5.4.7.
  10. M. A. Piqueras, B. Vidal, J. L. Corral, V. Polo, A. Martinez, and J. Marti, IEEE Photon. Technol. Lett. 17, 1947 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited