OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 18 — Sep. 15, 2008
  • pp: 2032–2034

Phenomenological model analysis for semiconductor optical amplifiers and application to time-domain digital polarization encoding

Zhengyong Li and Chongqing Wu  »View Author Affiliations

Optics Letters, Vol. 33, Issue 18, pp. 2032-2034 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate that semiconductor optical amplifiers (SOAs) for each wavelength of the input can be described by a lumped-elements sequence of a partly linear polarizer and a retarder followed by a polarization-independent amplifier, and further obtain two necessary conditions for the valuable orthogonal polarization rotation (OPR), which will be instructive for SOA-based all-optical signal processing. Subsequently we implement photoinduced OPR by controlling an 2.5 mW pump laser and find the optimal pump wavelength should be an 0.4 nm interval around the central wavelength of the probe laser. Therefore we propose a time-domain digital polarization encoding scheme based on photoinduced OPR with cross-gain modulation in a SOA and perform it well in a 15 km single-mode-fiber system at 2.5 Gbits s , which is applicable to optical-power-equalized fiber communication.

© 2008 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4080) Fiber optics and optical communications : Modulation
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(260.5430) Physical optics : Polarization

ToC Category:

Original Manuscript: May 27, 2008
Revised Manuscript: July 21, 2008
Manuscript Accepted: July 23, 2008
Published: September 4, 2008

Zhengyong Li and Chongqing Wu, "Phenomenological model analysis for semiconductor optical amplifiers and application to time-domain digital polarization encoding," Opt. Lett. 33, 2032-2034 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cotter, R. Manning, and K. Blow, Science 286, 1523 (1999). [CrossRef] [PubMed]
  2. M. Stephens, M. Asghari, R. Petty, and I. White, IEEE Photon. Technol. Lett. 9, 449 (1997). [CrossRef]
  3. D. Patrick, Electron. Lett. 30, 341 (1994). [CrossRef]
  4. H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 13, 335 (2001). [CrossRef]
  5. H. Soto, D. Erasme, and G. Guekos, IEEE Photon. Technol. Lett. 11, 970 (1999). [CrossRef]
  6. H. Dorren, D. Lenstra, Y. Liu, M. Hill, and G. Khoe, IEEE J. Quantum Electron. 39, 141 (2003). [CrossRef]
  7. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  8. W. Wang, K. Allaart, and D. Lenstra, Electron. Lett. 4, 1602 (2004). [CrossRef]
  9. L. Cimini, I. Habbab, R. John, and A. Saleh, Electron. Lett. 23, 1365 (1987). [CrossRef]
  10. W. Shieh and H. Kogelnik, IEEE Photon. Technol. Lett. 13, 40 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited