OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 19 — Oct. 1, 2008
  • pp: 2212–2214

Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire

Guang-Yin Chen, Yueh-Nan Chen, and Der-San Chuu  »View Author Affiliations

Optics Letters, Vol. 33, Issue 19, pp. 2212-2214 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (285 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The spontaneous emission (SE) of quantum dot (QD) excitons into surface plasmons in a cylindrical nanowire is investigated theoretically. Maxwell’s equations with appropriate boundary conditions are solved numerically to obtain the dispersion relations of surface plasmons. The SE rate of QD excitons is found to be greatly enhanced at certain values of the exciton bandgap. Application in generation of remote entangled states via superradiance is also pointed out and may be observable with current technology.

© 2008 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(270.0270) Quantum optics : Quantum optics
(270.5580) Quantum optics : Quantum electrodynamics
(270.6630) Quantum optics : Superradiance, superfluorescence
(270.5585) Quantum optics : Quantum information and processing
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Quantum Optics

Original Manuscript: March 6, 2008
Revised Manuscript: July 7, 2008
Manuscript Accepted: August 18, 2008
Published: September 29, 2008

Guang-Yin Chen, Yueh-Nan Chen, and Der-San Chuu, "Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Ritchie, Phys. Rev. 106, 874 (1957). [CrossRef]
  2. H. A. Atwater, Sci. Am. 296, 56 (2007). [CrossRef] [PubMed]
  3. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, Phys. Rev. B 10, 3038 (1974). [CrossRef]
  4. R. Zia and M. L. Brongersma, Nat. Nanotechnol. 2, 426 (2007). [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003). [CrossRef] [PubMed]
  6. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, Opt. Lett. 22, 475 (1997). [CrossRef] [PubMed]
  7. H. F. Arnoldus and T. F. George, Phys. Rev. A 37, 761 (1988). [CrossRef] [PubMed]
  8. A. Neogi, H. Morkoç, T. Kuroda, and A. Tackeuchi, Opt. Lett. 30, 93 (2005). [CrossRef] [PubMed]
  9. R. Paiella, Appl. Phys. Lett. 87, 111104 (2005). [CrossRef]
  10. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, Phys. Rev. Lett. 97, 053002 (2006). [CrossRef] [PubMed]
  11. D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, Nat. Phys. 3, 807 (2007). [CrossRef]
  12. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  13. From the numerical results, the imaginary parts of ω for the bound modes are actually very small (10−4~10−5 of the real parts).
  14. In fact, the exciton eventually decays into free space. Since the coupling to the surface plasmons is so strong, one can roughly neglect the effect from vacuum fluctuations in the regime of t<1/γ0.
  15. Y. N. Chen, D. S. Chuu, and T. Brandes, Phys. Rev. Lett. 90, 166802 (2003). [CrossRef] [PubMed]
  16. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, Nature 450, 402 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited