OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 2 — Jan. 15, 2008
  • pp: 147–149

Ultracompact and low-power optical switch based on silicon photonic crystals

Daryl M. Beggs, Thomas P. White, Liam O’Faolain, and Thomas F. Krauss  »View Author Affiliations

Optics Letters, Vol. 33, Issue 2, pp. 147-149 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (331 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Switching light is one of the most fundamental functions of an optical circuit. As such, optical switches are a major research topic in photonics, and many types of switches have been realized. Most optical switches operate by imposing a phase shift between two sections of the device to direct light from one port to another, or to switch it on and off, the major constraint being that typical refractive index changes are very small. Conventional solutions address this issue by making long devices, thus increasing the footprint, or by using resonant enhancement, thus reducing the bandwidth. We present a slow-light-enhanced optical switch that is 36 times shorter than a conventional device for the same refractive index change and has a switching length of 5.2 μ m .

© 2008 Optical Society of America

OCIS Codes
(230.4000) Optical devices : Microstructure fabrication
(130.4815) Integrated optics : Optical switching devices
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: September 11, 2007
Revised Manuscript: November 5, 2007
Manuscript Accepted: November 22, 2007
Published: January 9, 2008

Daryl M. Beggs, Thomas P. White, Liam O'Faolain, and Thomas F. Krauss, "Ultracompact and low-power optical switch based on silicon photonic crystals," Opt. Lett. 33, 147-149 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. T. S. El-Bawab, Optical Switching (Springer, 2006). [CrossRef]
  2. T. F. Krauss, J. Phys. D 40, 2666 (2007). [CrossRef]
  3. M. D. Settle, R. J. P. Engelen, M. Salib, A. Michaeli, L. Kuipers, and T. F. Krauss, Opt. Express 15, 219 (2007). [CrossRef] [PubMed]
  4. Y. A. Vlasov, M. O'Boyle, H. F. Hamann, and S. J. McNab, Nature 438, 65 (2005). [CrossRef] [PubMed]
  5. L. Gu, W. Jiang, X. Chen, L. Wang, and R. T. Chen, Appl. Phys. Lett. 90, 071105 (2007). [CrossRef]
  6. N. Yamamoto, T. Ogawa, and K. Komori, Opt. Express 14, 1223 (2006). [CrossRef] [PubMed]
  7. Y. A. Vlasov and S. J. McNab, Opt. Lett. 31, 50 (2006). [CrossRef] [PubMed]
  8. J. P. Hugonin, P. Lalanne, T. P. White, and T. F. Krauss, Opt. Lett. 32, 2638 (2007). [CrossRef] [PubMed]
  9. S. G. Johnson and J. D. Joannopoulos, Opt. Express 8, 173 (2000). [CrossRef]
  10. L. O'Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De la Rue, and T. F. Krauss, Electron. Lett. 42, 1454 (2006). [CrossRef]
  11. J. A. McCaulley, V. M. Donnelly, M. Vernon, and I. Taha, Phys. Rev. B 49, 7408 (1994). [CrossRef]
  12. D. Mori and T. Baba, Opt. Express 13, 9398 (2005). [CrossRef] [PubMed]
  13. Yu. Petrov and M. Eich, IEEE J. Sel. Areas Commun. 23, 1396 (2006). [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, Opt. Express 13, 2678 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited