OSA's Digital Library

Optics Letters

Optics Letters

| RAPID, SHORT PUBLICATIONS ON THE LATEST IN OPTICAL DISCOVERIES

  • Editor: Alan E. Willner
  • Vol. 33, Iss. 2 — Jan. 15, 2008
  • pp: 177–179

Circular beams

Miguel A. Bandres and Julio C. Gutiérrez-Vega  »View Author Affiliations


Optics Letters, Vol. 33, Issue 2, pp. 177-179 (2008)
http://dx.doi.org/10.1364/OL.33.000177


View Full Text Article

Enhanced HTML    Acrobat PDF (91 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A very general beam solution of the paraxial wave equation in circular cylindrical coordinates is presented. We call such a field a circular beam (CiB). The complex amplitude of the CiB is described by either the Whittaker functions or the confluent hypergeometric functions and is characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the CiB are the standard, elegant, and generalized Laguerre–Gauss beams; Bessel–Gauss beams; hypergeometric beams; hypergeometric–Gaussian beams; fractional-order elegant Laguerre–Gauss beams; quadratic Bessel–Gauss beams; and optical vortex beams.

© 2008 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.2590) Fourier optics and signal processing : ABCD transforms
(260.1960) Physical optics : Diffraction theory
(350.5500) Other areas of optics : Propagation

ToC Category:
Physical Optics

History
Original Manuscript: November 8, 2007
Revised Manuscript: December 4, 2007
Manuscript Accepted: December 5, 2007
Published: January 11, 2008

Citation
Miguel A. Bandres and Julio C. Gutiérrez-Vega, "Circular beams," Opt. Lett. 33, 177-179 (2008)
http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-33-2-177


Sort:  Year  |  Journal  |  Reset  

References

  1. M. S. Soskin and M. Vasnetsov, Prog. Opt. 42, 219 (2001). [CrossRef]
  2. A. E. Siegman, Lasers (University Science, 1986).
  3. A. Wunsche, J. Opt. Soc. Am. A 6, 1320 (1989). [CrossRef]
  4. M. A. Bandres and J. C. Gutiérrez-Vega, Proc. SPIE 6290, 6290-0S (2006).
  5. F. Gori, G. Guattari, and C. Padovani, Opt. Commun. 64, 491 (1987). [CrossRef]
  6. J. C. Gutiérrez-Vega and M. A. Bandres, J. Opt. Soc. Am. A 22, 289 (2005). [CrossRef]
  7. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, and V. A. Soifer, Opt. Lett. 32, 742 (2007). [CrossRef] [PubMed]
  8. E. Karimi, G. Zito, B. Piccirillo, L. Marruci, and E. Santamato, Opt. Lett. 32, 3053 (2007). [CrossRef] [PubMed]
  9. V. V. Kotlyar and A. A. Kovalev, J. Opt. Soc. Am. A 25, 262 (2008). [CrossRef]
  10. J. C. Gutiérrez-Vega, Opt. Express 15, 6300 (2007). [CrossRef] [PubMed]
  11. C. F. R. Caron and R. M. Potvliege, Opt. Commun. 164, 83 (1999). [CrossRef]
  12. M. V. Berry, J. Opt. A, Pure Appl. Opt. 6, 259 (2004). [CrossRef]
  13. C. P. Boyer, E. G. Kalnins, and W. Miller, J. Math. Phys. 16, 499 (1975). [CrossRef]
  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1964).
  15. M. A. Porras, R. Borghi, and M. Santarsiero, J. Opt. Soc. Am. A 18, 177 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited