OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 20 — Oct. 15, 2008
  • pp: 2404–2406

Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index

Stanislav Derevyanko  »View Author Affiliations

Optics Letters, Vol. 33, Issue 20, pp. 2404-2406 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (180 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The statistics of the reflection spectrum of a short-correlated disordered fiber Bragg grating are studied. The averaged spectrum appears to be flat inside the bandgap and has significantly suppressed sidelobes compared to the uniform grating of the same bandwidth. This is due to the Anderson localization of the modes of a disordered grating. This observation prompts a new algorithm for designing passband reflection gratings. Using the stochastic invariant imbedding approach it is possible to obtain the probability distribution function for the random reflection coefficient inside the bandgap and obtain both the variance of the averaged reflectivity as well as the distribution of the time delay of the grating.

© 2008 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 10, 2008
Revised Manuscript: August 20, 2008
Manuscript Accepted: August 25, 2008
Published: October 15, 2008

Stanislav Derevyanko, "Design of a flat-top fiber Bragg filter via quasi-random modulation of the refractive index," Opt. Lett. 33, 2404-2406 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Othonos and K. Kalli, Fiber Bragg Gratings (Artech House, 1999).
  2. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997). [CrossRef]
  3. J. Skaar, L. Wang, and T. Erdogan, IEEE J. Quantum Electron. 37, 165 (2001). [CrossRef]
  4. E. G. Turitsyna, J. D. Ania-Castanon, S. K. Turitsyn, L. Kennedy, and K. Sugden, Electron. Lett. 39, 351 (2003). [CrossRef]
  5. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Lamming, Electron. Lett. 34, 800 (1998). [CrossRef]
  6. G. H. Song and S. Y. Shin, J. Opt. Soc. Am. A 2, 1905 (1985). [CrossRef]
  7. O. V. Belai, L. L. Frumin, E. V. Podivilov, and D. A. Shapiro, J. Opt. Soc. Am. B 24, 1451 (2007). [CrossRef]
  8. L. Poladian, Opt. Lett. 25, 787 (2000). [CrossRef]
  9. R. Feced and M. N. Zervas, J. Lightwave Technol. 18, 90 (2000). [CrossRef]
  10. J. Skaar and R. Feced, J. Opt. Soc. Am. A 19, 2229 (2002). [CrossRef]
  11. A. Rosenthal and M. Horowitz, J. Opt. Soc. Am. A 22, 84 (2005). [CrossRef]
  12. H. Kogelnik, in Guided Wave Optolelectronics, T.Tamir, ed. (Springer-Verlag, 1990), pp. 7-88.
  13. V. V. Konotop and L. Vazquez, Nonlinear Random Waves (World Scientific, 1994). [CrossRef]
  14. I. M. Lifshitz, S. A. Gredescul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited