OSA's Digital Library

Optics Letters

Optics Letters


  • Editor: Alan E. Willner
  • Vol. 33, Iss. 21 — Nov. 1, 2008
  • pp: 2467–2469

Pulse width effect in ultrafast laser ionization imaging

Y. Zhao, Y. Liang, N. Zhang, M. Wang, and X. Zhu  »View Author Affiliations

Optics Letters, Vol. 33, Issue 21, pp. 2467-2469 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (418 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of different laser pulse widths on laser-induced ionization imaging of microstructures embedded in transparent materials are investigated. It is shown that a femtosecond laser-induced ionization probe can detect the variation of elemental composition of the sample materials with a higher contrast ratio, whereas the ionization probe generated by picosecond laser pulses is more sensitive to the structural change inside optical materials, which can be well explained by the different roles of multiphoton ionization and avalanche ionization involved in material breakdown. These results also suggest that an optimum diagnosis could be obtained if well-selected laser parameters are employed in ultrafast laser ionization imaging.

© 2008 Optical Society of America

OCIS Codes
(190.1900) Nonlinear optics : Diagnostic applications of nonlinear optics
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(350.3390) Other areas of optics : Laser materials processing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: July 11, 2008
Revised Manuscript: September 9, 2008
Manuscript Accepted: September 12, 2008
Published: October 22, 2008

Y. Zhao, Y. Liang, N. Zhang, M. Wang, and X. Zhu, "Pulse width effect in ultrafast laser ionization imaging," Opt. Lett. 33, 2467-2469 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Cremers and L. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006). [CrossRef]
  2. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, Spectrochim. Acta Part B 57, 1115 (2002). [CrossRef]
  3. C. Nicole, H. L. Offerhaus, M. J. Vrakking, F. Lépine, and Ch. Bordas, Phys. Rev. Lett. 88, 133001 (2002). [CrossRef] [PubMed]
  4. O. L. Monti, T. A. Baker, and D. J. Nesbitt, J. Chem. Phys. 125, 154709 (2006). [CrossRef] [PubMed]
  5. Y. Zhao, N. Zhang, J. Yang, and X. Zhu, Appl. Phys. Lett. 88, 241102 (2006). [CrossRef]
  6. Y. Zhao, G. Mu, and X. Zhu, Opt. Lett. 31, 2765 (2006). [CrossRef] [PubMed]
  7. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994). [CrossRef]
  8. L. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).
  9. F. Courvoisier, V. Boutou, C. Favre, S. C. Hill, and J.-P. Wolf, Opt. Lett. 28, 206 (2003). [CrossRef] [PubMed]
  10. C. A. Sacchi, J. Opt. Soc. Am. B 8, 337 (1991). [CrossRef]
  11. N. Bloembergen, IEEE J. Quantum Electron. 10, 375 (1974). [CrossRef]
  12. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, Opt. Lett. 26, 1726 (2001). [CrossRef]
  13. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996). [CrossRef] [PubMed]
  14. A. Zoubir, M. Richardson, L. Canioni, A. Brocas, and L. Sarger, J. Opt. Soc. Am. B 22, 2138 (2005). [CrossRef]
  15. E. N. Glezer and E. Mazur, Appl. Phys. Lett. 71, 882 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited